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Abstract

In the field of psychological science, behavioral performance in computer-based cognitive tasks often exhibits poor reliabil-
ity. The absence of reliable measures of cognitive processes contributes to non-reproducibility in the field and impedes the
investigation of individual differences. Specifically in visual search paradigms, response time-based measures have shown
poor test-retest reliability and internal consistency across attention capture and distractor suppression, but one study has
demonstrated the potential for oculomotor measures to exhibit superior reliability. Therefore, in this study, we investigated
three datasets to compare the reliability of learning-dependent distractor suppression measured via distractor fixations
(oculomotor capture) and latency to fixate the target (fixation times). Our findings reveal superior split-half reliability of
oculomotor capture compared to that of fixation times regardless of the critical distractor comparison, with the reliability of
oculomotor capture in most cases falling within the range that is acceptable for the investigation of individual differences.
We additionally find that older adults have superior oculomotor reliability compared with young adults, potentially address-
ing a significant limitation in the aging literature of high variability in response time measures due to slower responses. Our
findings highlight the utility of measuring eye movements in the pursuit of reliable indicators of distractor processing and
the need to further test and develop additional measures in other sensory domains to maximize statistical power, reliability,
and reproducibility.
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Introduction

The field of psychological science has been challenged in
the past decade to improve the replicability of behavioral
research based on large-scale examples of non-reproduci-
bility (Johnson et al., 2017; Open Science Collaboration,
2012, 2015). Nosek and colleagues define reproducibility,
robustness, and replicability as “testing the reliability of a
prior finding” and propose that maximizing the reliability
of research findings will improve research credibility and
knowledge translation into application (Nosek et al., 2022).
The reliability of measurements is particularly important
when maximizing the power of significance tests, and
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measures with poor reliability are not sensitive in detecting
individual differences (Zimmerman et al., 1993). Research-
ers have commonly utilized two types of reliability meas-
urements: test-retest reliability and internal consistency
(split-half correlation). These tests have often revealed poor
reliability of behavioral measures in the field of psychologi-
cal science (Clark et al., 2022; Dang et al., 2020; Draheim
et al., 2019; Paap & Sawi, 2016), highlighting a need for
researchers in the field to identify and develop more reli-
able measures (in comparison to frequently used measures
derived from behavioral responses) that can be consistently
employed across a range of experimental paradigms.

The critical need for a reliable measure in standardized
experimental designs has been made evident from the rise
in research on individual differences as a means to more
accurately characterize the underlying cognitive processes
observed in human performance (Brysbaert, 2024). As
the practical applications of research findings are being
increasingly prioritized, maximizing the transfer of scien-
tific knowledge requires research at the individual level. For
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this aim, Brysbaert (2024) emphasizes the importance of not
only using standardized task protocols that have norms in
addition to valid and reliable measurements but also of using
robust evaluations of correlation coefficients with enough
participants to attain stable reliability estimates (Hajcak
et al., 2017; Schonbrodt & Perugini, 2013). Researchers
are now tasked with considering relevant parameters in the
design stage of their experiments, including sample size esti-
mates from power analyses and calculating the number of
trials required to observe a specific effect size, which can be
optimized through publicly available toolboxes (Baker et al.,
2021; Draheim et al., 2019). Although the field of experi-
mental psychology has grown to better recognize the rigor-
ous requirements for individual difference research (Bauer,
2011), many problems still remain, such as with large online
data collection efforts as a means to attain larger sample
sizes (greater than 400 participants) and achieving robust
correlation estimates with small effects (Cooper, 2024). Fur-
thermore, the cost of conducting these large-scale studies is
often unrealistic (Konen & Karbach, 2021) and the burden
of developing and validating robust experimental tasks for
individual difference research is time consuming and often
not a core goal for researchers (Brysbaert, 2024). However,
in practice, researchers in the field should at least validate
both the internal consistency and/or test—retest reliability of
their acquired measures to create a foundation to ultimately
enable productive individual differences research. Accept-
able reliability estimates for research are somewhat arbitrary
and vary across fields even within psychological sciences,
although 0.7 is a frequently used benchmark (Taber, 2018).
Identifying reliable measures of cognitive processes is espe-
cially important for individual differences research, as the
reliability of two measures provides an upper bound on the
strength of the relationship that can be detected between
them. More generally, the reliability of a measure determines
the confidence with which it can be used to draw conclu-
sions about the performance of individual participants and
establish meaningful norms.

In the field of experimental psychology, researchers uti-
lizing visual search paradigms have recently highlighted the
poor reliability of measures in commonly used task para-
digms, specifically using behavioral response times. Ivanov
et al. (2023) investigated whether difference scores in manual
response times and accuracy were reliable and could be uti-
lized as an individual-level measure. Utilizing both split-half
and test—retest reliability measurements, the authors investi-
gated whether attention capture learned distractor suppression
at a high-probability location in the visual search array and
corresponding suppression of targets at the high-probability
location could serve as reliable measures for investigating indi-
vidual differences (Ivanov et al., 2023). Over the three meas-
ures, the authors report poor to moderate split-half reliability
over response times and poor reliability over the accuracy,
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in addition to poor test-retest reliability with respect to both
response times and accuracy. Furthermore, three studies inves-
tigating selection history effects of reward learning in visual
search also reported poor test—retest reliability of behavioral
response times (Anderson & Kim, 2019; Freichel et al., 2023;
Garre-Frutos et al., 2024). These studies collectively identi-
fied that response time exhibits poor reliability over experi-
ence-driven attention effects. However, in Anderson and Kim
(2019), value-driven oculomotor capture exhibited strong
test-retest reliability, suggesting that oculomotor capture
may be more sensitive and reliable in contrast to oculomotor
fixation times and even more so when compared with manual
response times (Anderson & Kim, 2019; Weichselbaum et al.,
2018).

Therefore, in the current study, we investigated whether
oculomotor measures of distractor fixations provide superior
reliability compared to response time-based measures (fixation
time or time to make an eye movement to the target), providing
a potential solution to enable the more robust assessment of
individual differences in the attentional processing of distrac-
tors. We investigated oculomotor measures in three studies
containing a total of eight experiments that utilized a visual
search task incorporating attention capture and/or distractor
suppression. The selected studies were limited to investigat-
ing the reliability of distractor suppression in the context of
selection history effects, given pessimistic findings concern-
ing manual response time measures (Ivanov et al., 2023). We
aimed to examine the reliability of oculomotor measures in
visual search across multiple experimental paradigms incorpo-
rating statistical learning of a high-probability distractor loca-
tion, learned value associations with the distractor in a context
in which these associations lead to reduced distractor interfer-
ence, and proactive distractor suppression (feature-search) vs.
reactive distractor disengagement (singleton-search). Thus, we
look to evaluate the reliability of oculomotor measures across
numerous critical distractor comparisons. In two cases, data
from both older and younger adults was available, permitting
an assessment of the reliability of oculomotor measures as a
function of age. Based on the findings of Anderson and Kim
(2019), we hypothesize that the reliability of oculomotor cap-
ture measures will be superior to that of measures involving
fixation time, and that these oculomotor measures will also
demonstrate high reliability that is superior to the character-
istically low reliability associated with manual response time
measures as observed in the literature.

Methods
Datasets

We evaluated three datasets that incorporated oculomotor
measures in visual search tasks to investigate the reliability
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Table 1 Critical experimental design components in analyzed data-
sets. The critical distractor condition in each experiment probes a
unique attentional process explored in each manuscript. In Grégoire
et al. (2022), participants learned associations between outcomes

(reward, shock, neutral) and the distractor in a training phase. In addi-
tion, differences in the number of stimuli in the visual search array
and the time limit across datasets may contribute to differences in
reliability estimates that should be probed in future experiments

Critical distractor Training phase Search array ~ Search
condition set size array time
limit
Kim and Anderson (2022) Statistical learning of a high-probability distractor location No 6 1500 ms
Grégoire et al. (2022) Value- or threat-associated distractor Yes 6 1000 ms
Kim et al. (2024) Exp. 1 Distractor suppression in feature search No 4 2000 ms
Kim et al. (2024) Exp. 2 Attention capture by distractor in singleton search No 4 2000 ms

of oculomotor capture by the distractor and fixation times'
(oculomotor response times) between two critical distractor
conditions (Grégoire et al., 2022; Kim et al., 2024; Kim &
Anderson, 2022; see Table 1). In Kim and Anderson (2022),
the critical distractor comparison was a distractor appearing
at a high-probability location vs. a distractor appearing at a
low-probability location (statistical learning of a high-prob-
ability distractor location; n=36). In Grégoire et al. (2022),
the critical distractor comparison was previously condi-
tioned distractors (CS + ; associated with reward or electric
shock) vs. neutral distractors (value- and threat-modulated
attentional capture). In this latter study, we separated find-
ings over the three experiments (focusing on the first two in
which distractor suppression was observed; n=38 for Exper-
iment 1, n =234 for Experiment 2, and n =28 for Experiment
3). In Kim et al. (2024), the critical distractor comparison
was attention capture by the distractor on distractor-present
trials (first saccade to the distractor) vs. first fixation to a
single non-target in distractor-absent trials (attention capture
by a physically salient distractor when engaging in feature-
search or singleton-search mode); reliability scores were
separated by both experiments (feature-search vs. singleton-
search) and calculated separately among young and older
adult samples to probe potential age differences (n=28 for
all groups and experiments). For all experiments, each trial
of the oculomotor visual search task ended when a fixation
was made on the target (or no eye movement was registered
to the target within the time limit). No manual response
times were made in any experiment and an eye movement to
the target was itself the required response. All experiments
involved a search for a shape-defined target with some trials
containing a salient, color singleton distractor (see Fig. 1).

! When computing fixation times as a ratio (either between the two
critical distractor conditions or a difference score between two differ-
ent ratios involving distractor-absent trials), reliability estimates were
comparable to when computed simply as a difference score between
two conditions (maximum change was .078). Statistical comparisons
between fixation time vs. oculomotor capture did not change when
computing as a ratio.

Split-half reliability

Instead of utilizing an arbitrary odd vs. even split, we esti-
mated internal consistency by utilizing a permuted random
split procedure as in Garre-Frutos et al. (2024). In this pro-
cedure, all trials were randomly split into two halves with an
equal number of observations in each half per condition per
run to account for time-dependent effects (e.g., learning or
extinction). Trials for each half were then concatenated over
all runs. Then, a difference score between the two critical
distractor conditions was computed for each concatenated
half for each participant and correlated to get a Pearson’s r
correlation coefficient. This procedure was repeated 1000
times, and the correlation coefficients were averaged to
compute the mean split-half correlation. To examine the
robustness of the acquired reliability measures, we con-
verted each measure to a z-score and plotted histograms to
test for the presence of outliers, of which there were only
three across all experiments and measures (see Supplemen-
tary Fig. 1). All reliability measurements are reported with
95% confidence intervals. In addition, we also report Spear-
man-Brown-corrected (rg ) reliability estimates using the
following formula: rg 5 _ 2r/ (1 +7).

Non-parametric randomization tests

To determine whether estimates of reliability for oculomotor
capture and fixation times were significantly different across
conditions, we conducted non-parametric randomization
tests. Based on the 1000 split-half correlation coefficients
calculated for each measure (before averaging), we first com-
puted the mean of the difference scores between the oculo-
motor capture and fixation time measures as the true sample
mean. Then, from the combined 2000 coefficient values for
both measures, we randomly assigned 1000 values to each
measure to create two unique sample groups and computed
the difference of these group mean r values (random sam-
ple), under the null hypothesis that there was no difference
between split-half reliability obtained using each measure
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Fig. 1 Sequence of trial events from the experiment used to generate
each dataset with an example of a distractor-present trial. Although
the stimuli used across datasets were similar, key differences in

and, thus, random assignment of reliability to a dependent
measure should tend to produce a similar difference score to
the difference score observed between the two measures in
the actual data. This randomization procedure was repeated
1000 times and the p value was manually calculated from
the z-score using the observed sample mean.

Results

Kim and Anderson (2022)

In Kim and Anderson (2022), visual search required fixating
on a target shape singleton in the absence and presence of
a salient color singleton distractor. Critically, the location
of the color distractor in distractor-present trials was in a
high-probability location 45% of the time and equally often
in the other low-probability locations (five low-probability
locations). When comparing the oculomotor measures, the
split-half correlation for the learning-dependent reduction
in oculomotor capture (probability of fixating the distrac-
tor on low-probability minus high-probability trials) was
r=0.802 [0.643, 0.895] (r4.5=0.890 [0.794, 0.943]) and for
fixation time (latency to fixate the target on low-probability
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experimental design created a unique critical distractor that was used
to probe different attentional processes

minus high-probability trials) was r=0.698 [0.479, 0.835]
(r¢.5=0.822 [0.676, 0.906]). Using non-parametric rand-
omization tests, we found that the reliability of oculomotor
capture was significantly superior compared to fixation time,
p <0.001 (see Fig. 2).

Grégoire et al. (2022)

All three experiments in Grégoire et al. (2022) incorpo-
rated a paradigm that required participants to search for a
unique shape singleton (circle among diamonds or diamond
among circles), requiring participants to engage in singleton-
search mode in the presence of color singleton distractors.
Data from Experiments 1 and 2 were of particular inter-
est given that reduced processing of valent (reward- and
threat-related) distractors relative to neutral distractors was
observed in these experiments. In contrast, the opposite was
observed in Experiment 3, although reliabilities from all
three experiments are reported for completeness. Data from
both the training and test phases of each experiment were
combined, given that mechanisms of attention capture by the
distractor were identical in both phases, and the only differ-
ence in the test phase was the absence of feedback, which
provided sufficient data to conduct a split-half analysis. Over
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Fig.2 Split-half reliability of oculomotor capture is superior to reli-
ability of fixation times. Bar graphs depict Pearson’s correlation val-
ues over attention capture by the distractor (oculomotor capture) and
fixation times across multiple datasets. Regardless of critical distrac-
tor comparisons (high- vs. low-probability location; reward/threat-
related vs. neutral; distractor-present vs. distractor-absent), type

all experiments, the critical distractor condition comparison
was attention capture by the reward (Experiments 1-3) or
threat-related distractor (Experiment 1 only) vs. the neutral
distractor.

When comparing the difference in oculomotor measures
between the threat-related vs. neutral distractor in Experi-
ment 1, correlation values over the measure of oculomotor
capture was r=0.609 [0.359, 0.777] (r¢_5=0.757 [0.577,
0.867]) and over fixation time was r=0.419 [0.115, 0.651]
(r¢.5=0.591 [0.335, 0.766]). Like in Kim and Anderson
(2022), we found that the reliability of the learning-depend-
ent reduction in oculomotor capture was significantly supe-
rior compared to that observed using fixation time, p <0.001.
When comparing oculomotor measures between the reward-
related vs. neutral distractor, the correlations between the
critical distractor conditions over oculomotor capture were
r=0.692 [0.478, 0.828] (rg5=0.818 [0.675, 0.902]) and
r=0.458 [0.142, 0.689] (rg.5=0.628 [0.368, 0.797]), and
over fixation time were r=0.351 [0.035, 0.603] (rg5=0.520
[0.240, 0.720]) and r=0.372 [0.039, 0.631] (r4.5=0.543
[0.251, 0.745]), across Experiments 1 and 2, respectively.
Using non-parametric randomization tests, we again found
that the reliability of the learning-dependent reduction in
oculomotor capture was significantly superior compared to

Kim et al. (2024) Kim et al. (2024) Kim et al. (2024) Kim et al. (2024)
Exp. 1Young Exp. 1 Older Exp. 2 Young Exp. 2 Older
Adults Adults Adults Adults

@ Fixation Time Reliability

of visual search attentional template (feature-search vs. singleton-
search), and age groups (young adults vs. older adults), the reliabil-
ity of oculomotor capture was superior to the reliability of fixation
times. Furthermore, the reliability of older adults was higher than that
of young adults. Error bars reflect 95% confidence intervals of the
Pearson correlation coefficient. *p <0.05. ***p <0.001

that observed using fixation time across both Experiments,
ps<0.001 (see Fig. 2). Similar results were obtained in the
context of oculomotor capture in the third experiment. How-
ever, overall reliability was somewhat reduced (r=0.492
[0.146, 0.731] (r4_5=0.660 [0.381, 0.829]) for oculomotor
capture and r=0.272 [-0.112, 0.586] (rg.5 =0.428 [0.065,
0.691]) for fixation time, p <0.001).

Kim et al. (2024)

In Experiment 1 of Kim et al. (2024), the task required search-
ing for a specific target shape (circle or diamond, counterbal-
anced across participants), requiring participants to engage in
feature-search mode, which generally promotes the suppres-
sion of salient distractors (Gaspelin & Luck, 2018; Gaspe-
lin et al., 2015, 2017). We compared trials in which a sali-
ent color singleton distractor was present vs. absent (equally
often) and separately for young adults (18-23 years old) and
older adults (51-79 years old). Given that we measured atten-
tion capture by first fixations to the distractor on distractor-
present trials, we summed the first fixations on non-targets
in distractor-absent trials and divided the total by the number
of non-targets in the visual search array to calculate the prob-
ability of fixating at any one non-target (proxy distractor on
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distractor-absent trials). When comparing oculomotor meas-
ures between these distractor conditions, correlations over ocu-
lomotor capture (probability of fixating a [proxy] distractor
on distractor present vs. absent trials) were r=0.656 [0.375,
0.827] (rg.5=0.792 [0.595, 0.899]) for young adults and
r=0.765 [0.549, 0.885] (r5.5 =0.867 [0.730, 0.937]) for older
adults while correlations over fixation times (latency to fixate
the target on distractor present vs. absent trials) was r=0.547
[0.219, 0.764] (rg.5=0.707 [0.454, 0.855]) for young adults
and r=0.586 [0.273, 0.787] (rg5=0.739 [0.505, 0.872]) for
older adults. Both young and older adults demonstrated supe-
rior reliability for oculomotor capture compared to fixation
times, ps <0.001 (see Fig. 2). In addition, older adults dem-
onstrated superior oculomotor capture reliability compared to
young adults, p <0.001 (see Fig. 2). However, fixation time
reliability was not significantly different between age groups,
p=0.229.

In Experiment 2, the task required searching for a unique
shape singleton (circle among diamonds or diamond among
circles), necessitating participants to engage in singleton-
search mode. Under these conditions, attentional capture by
the color singleton distractor is robust and difficult to sup-
press, requiring reactive distractor disengagement to com-
plete the task (Bacon & Egeth, 1994; Geng, 2014; Theeu-
wes, 1992; Theeuwes et al., 1998). Again, we compared
trials in which the distractor was present vs. absent (equally
often) and separately for young adults (19-30 years old) and
older adults (57-80 years old). When comparing oculomo-
tor measures between these distractor conditions, correla-
tions over oculomotor capture were r=0.815 [0.635, 0.911]
(rg.=0.898 [0.789, 0.952]) for young adults and r=0.890
[0.774, 0.948] (r4.5=0.942 [0.877, 0.973]) for older adults
while correlations over fixation times were r=0.540 [0.209,
0.760] (rg.5=0.701 [0.444, 0.851]) for young adults and
r=0.693 [0.432, 0.847] (rg.5=0.819 [0.642, 0.913]) for
older adults. As in Experiment 1, both young and older
adults demonstrated superior reliability for oculomotor
capture compared to fixation times, ps <0.001 (see Fig. 2).
Furthermore, older adults demonstrated superior oculomotor
capture reliability compared to young adults, p=0.016, in
addition to superior fixation time reliability, p <0.001 (see
Fig. 2).

Discussion

Our findings demonstrate that, as a measure, oculomotor
capture produces superior reliability compared to measures
computed from fixation time across numerous critical dis-
tractor comparisons. Using the probability of fixating the
distractor, reliable learning-dependent reductions in distrac-
tor processing can be observed (Grégoire et al., 2022; Kim
& Anderson, 2022), in addition to a measure of attention
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capture that is reliable for both young and older adults
regardless of whether capture is overall suppressed under
conditions of feature search vs. singleton search. Even when
accounting for the increased variance in difference score
calculations (Miller & Ulrich, 2013; Paap & Sawi, 2016;
Weichselbaum et al., 2018), we demonstrate that oculomotor
measures of attention capture on average exhibit strong reli-
ability (mean across acquired values, r=0.711; rg 5 =0.824)
and are considerably more reliable than response time-based
measures (Anderson & Kim, 2019; Freichel et al., 2023;
Garre-Frutos et al., 2024; Ivanov et al., 2023).
Experimental psychologists have largely undervalued
the utility of individual differences, and relationships
between mechanisms of attentional control and other
cognitive or self-report measures have been relatively
unexplored. However, researchers investigating working
memory capacity have examined individual differences to
identify interactions between neural networks of memory
and attention. Prior findings reveal that individuals with
low working memory capacity exhibited stronger value-
driven attentional capture (Anderson et al., 2011) and also
took longer to disengage attention from a task-irrelevant
distractor (Fukuda & Vogel, 2011). This relationship
between working memory and attention is thought to be
mediated by the locus coeruleus-noradrenaline system,
particularly through modulation of the fronto-parietal
attention networks (Unsworth & Robison, 2017). How-
ever, individual differences in working memory capacity
were unable to predict performance in visual search tasks
requiring feature or conjunction search (Kane et al., 2006).
The lack of a relationship here is informed by the find-
ings of Ivanov et al. (2023) in which attention capture and
learning-dependent distractor suppression were investi-
gated as potentially useful measures of individual differ-
ences using manual response times. Unfortunately, both
within- and between-session reliability for both measures
were poor despite robust group-level differences across
conditions, suggesting that inconsistent findings relat-
ing individual differences in working memory capacity
to attention may be due in part to the use of measures
with poor reliability (all of the aforementioned studies
and many similar studies used attention measures derived
from manual response times). Interestingly, when value-
driven attentional capture was measured from distractor
fixations (Anderson & Yantis, 2012), the reported correla-
tion with working memory capacity was numerically quite
a bit stronger than when value-driven attentional capture
was measured from manual response times (Anderson
et al., 2011). Our findings suggest a potential path toward
more consistent outcomes relating attention measures to
other cognitive processes like working memory, and to
the more fruitful exploration of individual differences in
the learning-dependent control of attention more generally
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through fixation-based measures of attentional selection.
More reliable measures of attentional control are of par-
ticular importance if the goal is to predict the progression
of neurodegenerative diseases and other clinical outcomes,
and our findings point to the value of eye tracking in the
pursuit of such measures.

The set of experiments in Kim et al. (2024) addition-
ally revealed that older adults exhibit greater reliability
compared with young adults. Older adults generally have
slower response times compared with young adults and
this becomes problematic as overall slower response times
have greater variability (Kim et al., 2024; Tse et al., 2010).
Although Experiment 2 demonstrated that older adults make
more first fixations to the distractor compared with young
adults, superior reliability cannot be reduced to a product of
this greater capture effect given that Experiment 1 showed
similar oculomotor suppression by the distractor in both
age groups but still greater reliability in older adults. The
strong reliability of oculomotor measures in older adults
can address a significant issue in the aging literature of low
reliability due to increased error variance in measures like
response time. Furthermore, the relatively higher reliability
in Kim et al. (2024) suggests that the reliability of salience-
driven capture may be higher compared with statistically
learned distractor suppression (Grégoire et al., 2022; Kim &
Anderson, 2022), which is in line with the results of Ivanov
et al. (2023).

A natural question posed by the findings of the present
study is why oculomotor capture produces a more reli-
able measure of distractor processing than fixation time
in addition to what is typically observed in the literature
with respect to manual response time. Although we can
only speculate, this superior reliability may be found in
the ballistic nature of the measure. Oculomotor capture
essentially measures the probability that a task-irrelevant
stimulus evokes greater attentional priority than the target
at the time of saccade initiation, being directly linked to
distractor-target competition in the visual system. Manual
response time-based measures add a host of post-selection
processes that are tied to target-response mappings and the
execution of a manual response (often a keypress), all of
which contribute variability that is removed when assessing
oculomotor capture. Even in the context of fixation time, the
time required to disengage attention from any non-target that
is fixated and the efficiency with which the subsequent eye
movement is targeted contribute additional variability that
occurs after oculomotor capture is assessed, during which
there is additional opportunity for task-unrelated processes
(e.g., mind wandering) to randomly slow responses. If the
goal is to measure distractor processing, the probability of
initially fixating the distractor (oculomotor capture) may be
the purest and most direct means of assessing it.

Our findings across multiple experiments suggest that the
superior reliability of oculomotor capture relative to even
response time-based measures derived from eye tracking
may reflect a more general property of the measurements
that would further generalize to other tasks and experimental
situations. However, determining whether this is the case
requires further investigation, in addition to the extent to
which specific mechanisms of distractor processing (e.g.,
learning effects that promote capture vs. suppression, sali-
ence-driven vs. learning-dependent priority) are differently
reliable. Similarly, it would also be important to investigate
whether the observed high reliability of oculomotor capture
as a measure extends to other mechanisms of distractor pro-
cessing (e.g., contingent attention capture, emotion-modu-
lated distraction).

The present study suggests a potential avenue forward
for the field of psychological science to maximize reproduc-
ibility by utilizing oculomotor measures that exhibit high
reliability. However, the biggest limitation in acquiring such
measures is the accessibility of eye-tracking technology. All
of the datasets analyzed utilized an EyeLink 1000 plus eye
tracker (SR Research) that is far less accessible than what
is required to conduct research using manual response time
measures, both with respect to financial cost and training.
The development of more reliable measures of visual infor-
mation processing involving manual response time that can
more closely approximate what we were able to achieve with
oculomotor measures is therefore an important target for
future research.

Another limitation is the sample size of the datasets we
drew from in the present study and their ability to produce
stable reliability estimates (Schonbrodt & Perugini, 2013).
Based on Schonbrodt and Perugini’s (2013) calculations, our
relatively high reliability estimates primarily provides robust
stability despite the relatively low sample in the analyzed
datasets. However, we recognize that some of our weaker
correlations over the dependent measure fixation time may
not be robust enough to provide stable estimates. While the
level of confidence over the stability in our correlation esti-
mates may not be integral to our specific research question
in comparing reliability estimates of oculomotor capture
and fixation time, a larger sample size may be required to
provide higher confidence in the calculated reliability esti-
mates. In addition, we did not conduct between-experiment
comparisons of oculomotor reliability given the significantly
different attentional processes probed by each experiment
and the different experimental design features that may be
contributing to reliability (see Table 1). Future experiments
with standardized experimental designs may be beneficial to
explore whether reliability between different distractor types
(e.g., value-associated distractors vs. statistically learned
probabilities) may be superior for conducting research on
individual differences in distractor processing. Finally, our
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analysis of existing datasets limited our evaluations of reli-
ability to internal consistency, and we were unable to explore
stability over time (i.e., test-retest reliability; see Ander-
son & Kim, 2019). We urge the field to further explore the
test—retest reliability of oculomotor measures to build the
foundation for eye tracking to be a potential norm in indi-
vidual differences research.

At least for the time being, until more reliable response
time-based measures are developed, we recommend that
researchers consider investing in oculomotor measures
particularly when individual differences in distractor pro-
cessing are of scientific interest. Oculomotor measures are
naturally bound to experiments involving the processing of
visual information, and it is also important to identify reli-
able measures of information processing in other sensory
modalities in an effort to maximize statistical power and
reproducibility.
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