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A B S T R A C T   

A growing body of research suggests that observers rely on a variety of suboptimal strategies when searching for 
objects. However, real-world environments contain a variety of statistical regularities that enable more efficient 
processing of information. In the present study, we examined whether statistical learning can influence the 
strategic use of attentional control using a modified version of the adaptive choice visual search task. Participants 
searched through an array of colored squares and identified a digit located within a red or blue target square. 
Each trial contained both a red and a blue target, and participants were free to choose which color to search for. 
On each trial, more squares were presented in one color than the other color. Thus, the optimal strategy was to 
search for the color with the fewest squares. Critically, one color was the optimal color on 75% of trials, while the 
other color was the optimal color on the remaining 25% of trials. Participants were faster to identify targets and 
made a larger proportion of optimal choices when the high-probability optimal color was optimal. Thus, sta
tistical learning facilitated both search for the targets and the optimal choice of attentional control settings. 
These effects persisted when the color contingencies were equated, suggesting that these findings were not 
simply due to intertrial priming. Moreover, participants were not slower to identify targets when the high- 
probability optimal color appeared as a distractor, suggesting that these findings were not due to attentional 
capture by this color. Together, these findings suggest that statistical learning can facilitate the strategic use of 
attentional control by biasing which features observers choose to search for.   

1. Introduction 

A substantial body of research has been devoted to identifying which 
factors influence the control of attention. Early theories of attention 
distinguished between stimulus-driven and goal-directed forms of 
attentional control (e.g., Corbetta & Shulman, 2002; Theeuwes, 2010). 
For example, both visual salience (Theeuwes, 1992; Yantis & Jonides, 
1984) and observers’ task goals (Bacon & Egeth, 1994; Folk, Remington, 
& Johnston, 1992) have been found to influence the allocation of 
attention. However, more recent theories suggest that prior experience, 
or selection history, can also influence the control of attention (e.g., 
Anderson et al., 2021; Awh, Belopolsky, & Theeuwes, 2012). For 
example, intertrial priming (Maljkovic & Nakayama, 1994), statistical 
learning (Geng & Behrmann, 2005; Jiang, Swallow, Rosenbaum, & 
Herzig, 2013; Wang & Theeuwes, 2018a), reward learning (Anderson, 
Laurent, & Yantis, 2011; Della Libera & Chelazzi, 2006; Hickey, Che
lazzi, & Theeuwes, 2010), and aversive conditioning (Anderson & 
Britton, 2020; Schmidt, Belopolsky, & Theeuwes, 2015) have all been 
found to influence the allocation of attention. Critically, these factors 

can influence attentional selection independently of visual salience or 
observers’ task goals, suggesting that selection history represents a 
distinct form of attentional control (e.g., Anderson et al., 2021). 

In many cases, visual salience and selection history compete with 
observers’ task goals for the control of attention. To prioritize among 
these competing factors, many theories suggest that observers adopt an 
attentional set, or a set of features that is prioritized for attentional se
lection (e.g., Folk et al., 1992). For example, when observers search for a 
particular color, attention is biased toward objects that share this color. 
Previous evidence suggests that observers can adopt attentional sets for 
a variety of features, including color (Folk, Leber, & Egeth, 2002; Folk & 
Remington, 1998), abrupt onsets (Atchley, Kramer, & Hillstrom, 2000; 
Folk, Remington, & Wright, 1994), and apparent motion (Folk et al., 
1994). There is also evidence that observers can adopt attentional sets 
for more abstract features, such as uniqueness (Bacon & Egeth, 1994) or 
relational information (Becker, Folk, & Remington, 2010). Lastly, there 
is some evidence that observers can adopt attentional sets for a partic
ular category of objects (Lim, Clement, & Pratt, 2021; Wyble, Folk, & 
Potter, 2013). Together, these findings suggest that observers can 
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prioritize a variety of features for attentional selection. 
Typically, most studies have examined the goal-directed control of 

attention by instructing observers to search for a particular feature. This 
differs from many real-world situations, in which observers are free to 
choose which features to search for. For example, when searching for 
one’s car in a crowded parking lot, observers can choose to search based 
on its color, shape, or other visual features. However, searching for one’s 
car based on its color may be an inefficient strategy if other cars share 
similar colors. Previous evidence suggests that observers rely on a va
riety of strategies when searching for objects, some more efficient than 
others. For example, Bacon and Egeth (1994) found that observers can 
ignore salient distractors if they search for objects based on their specific 
visual features. However, observers often fail to use this strategy, instead 
searching for any unique object in the display. Several studies also 
suggest that observers often persist in using a particular strategy once it 
has been learned (Leber & Egeth, 2006a, 2006b; Leber, Kawahara, & 
Gabari, 2009; Liao, Britton, & Anderson, 2020) and can use different 
strategies in a context-specific manner (Cosman & Vecera, 2013). 
However, few studies have examined why observers choose to adopt 
different search strategies. 

To examine the strategic use of attentional control, Irons and Leber 
(2016, 2018) recently developed the adaptive choice visual search (ACVS) 
task based on the finding that observers can restrict their search to a 
subset of stimuli (e.g., Bacon & Egeth, 1997; Egeth, Virzi, & Garbart, 
1984). In this task, participants search through an array of colored 
squares and identify a digit located within a red or blue target square. 
Each trial contains both a red and a blue target, and participants are free 
to choose which color to search for. On each trial, more squares are 
presented in one color than the other color. Thus, the optimal strategy is 
to search for the color with the fewest squares (the optimal color). Crit
ically, the optimal color unpredictably changes from trial to trial. Thus, 
using the optimal strategy requires participants to actively monitor the 
environment and update their attentional control settings accordingly. 
Irons and Leber (2016, 2018) found that participants make a relatively 
low proportion of optimal choices in this task. Participants also rely on a 
variety of suboptimal strategies, with some participants frequently 
switching colors and others repeatedly searching for the same color. 
Based on these findings, the researchers concluded that visual search 
behavior is often far from optimal (see also Nowakowska, Clarke, & 
Hunt, 2017). 

In most ACVS studies, the optimal color unpredictably changes from 
trial to trial (Irons & Leber, 2016, 2018). However, real-world envi
ronments contain a variety of statistical regularities that enable more 
efficient processing of information. A large body of research suggests 
that observers can implicitly learn these statistical regularities, even in 
the absence of instructions or explicit awareness (Fiser & Aslin, 2001, 
2002; Turk-Browne, Jungé, & Scholl, 2005). Moreover, this statistical 
learning process has been found to influence the allocation of attention. 
For example, observers are faster to identify targets when targets and 
distractors co-occur in specific spatial configurations (Chun & Jiang, 
1998, 2003). Observers are also faster at identifying targets (Geng & 
Behrmann, 2002, 2005; Jiang et al., 2013) and are more efficient at 
suppressing salient distractors (Britton & Anderson, 2020; Wang & 
Theeuwes, 2018a, 2018b, 2018c) when these objects appear at high- 
probability locations. Lastly, there is some evidence that attention is 
automatically biased toward statistical regularities (Zhao, Al-Aidroos, & 
Turk-Browne, 2013). Together, these findings suggest that statistical 
learning plays an important role in the allocation of attention. 

Although statistical learning can facilitate processes such as target 
selection and distractor suppression, it is unclear whether statistical 
learning can also influence the strategic use of attentional control. For 
example, can statistical learning bias which features observers choose to 
search for? Notably, there is some evidence that observers can adopt 
attentional sets based on statistical learning. For example, Cosman and 
Vecera (2014) had participants identify a red or green target that was 
preceded by a red or green peripheral cue. In an initial training phase, 

the target was presented in one color on 80% of trials and the other color 
on the remaining 20% of trials. In a subsequent test phase, these color 
contingencies were equated. Participants were faster to identify the 
target when it was preceded by a valid cue, suggesting that the cue 
captured attention. Moreover, the magnitude of this effect was greater 
when the cue was presented in the high-probability target color. These 
effects persisted when the color contingencies were equated, suggesting 
that these findings were not simply due to intertrial priming (Maljkovic 
& Nakayama, 1994). In the present study, we examined whether sta
tistical learning can facilitate the strategic use of attentional control by 
biasing which features observers choose to search for. 

2. Experiment 1 

In Experiment 1, we examined whether statistical learning can 
facilitate the strategic use of attentional control using a modified version 
of the ACVS task (Irons & Leber, 2016, 2018). Participants searched 
through an array of colored squares and identified a digit located within 
a red or blue target square. Each trial contained both a red and a blue 
target, and participants were free to choose which color to search for. On 
each trial, more squares were presented in one color than the other 
color. Thus, the optimal strategy was to search for the color with the 
fewest squares. Critically, one color was the optimal color on 75% of 
trials, while the other color was the optimal color on the remaining 25% 
of trials. If statistical learning facilitates search for the targets, partici
pants should be faster to identify targets when the high-probability 
optimal color is optimal. Moreover, if statistical learning facilitates the 
optimal choice of attentional control settings, participants should make 
a larger proportion of optimal choices when this color is optimal. 

2.1. Methods 

2.1.1. Participants 
Assuming a small effect size (f = 0.1) and a moderate correlation 

between levels of our within-subjects variables (ρ = 0.5), an a priori 
power analysis conducted using G*Power 3 (Faul, Erdfelder, Lang, & 
Buchner, 2007) indicated that a sample size of 24 participants would be 
sufficient to detect a main effect of color at 80% statistical power. 
However, to account for the added variability of recruiting and testing 
participants online, we increased our sample size to 48 participants. As a 
result, a group of 70 participants from the Texas A&M community were 
recruited and tested online; however, 22 participants were excluded due 
to low accuracy (65% correct or less; n = 17) or because they made a low 
proportion of optimal choices (50% or less; n = 14). Participants could 
be excluded for multiple reasons. The remaining 48 participants (29 
females; mean age = 19.4 years, SD = 2.1 years) were between the ages 
of 18 and 35 and reported normal or corrected-to-normal visual acuity 
and normal color vision. All participants received course credit for 
participating in the experiment. 

2.1.2. Apparatus and stimuli 
Stimuli consisted of 54 colored squares (each 4% of participants’ 

screen height) arranged in three concentric rings around the center of 
the screen (see Fig. 1). The inner (radius 20% of participants’ screen 
height), middle (radius 30% of participants’ screen height), and outer 
rings (radius 40% of participants’ screen height) consisted of 12, 18, and 
24 squares, respectively. In addition to 14 green squares, the search 
display contained either 13 red squares and 27 blue squares (red optimal 
trials) or 27 red squares and 13 blue squares (blue optimal trials). Each 
square contained a white digit between 2 and 9 (3% of participants’ 
screen height). One red target square and one blue target square con
tained a digit between 2 and 5. The two digits were always different so 
that the digit participants reported was diagnostic of which target they 
found. All other red or blue squares contained digits between 6 and 9. 
Green squares were task-irrelevant, and contained digits between 2 and 
9 to prevent participants from searching based on digit identity alone. 
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All stimuli were presented on a black background. The experiment was 
programmed and run using PsychoPy3 software (Peirce et al., 2019), 
and participants viewed the stimuli on their own computers. 

2.1.3. Procedure and design 
At the beginning of each trial, a white fixation cross (2% of partici

pants’ screen height) was presented in the center of the screen. After 
1000 ms, a search display was presented on the screen. Participants were 
instructed to search for the red or blue target square and identify the 
digit located within this square. Participants were free to choose which 
color to search for. Participants pressed the “z”, “x”, “n”, or “m” keys to 
identify whether the digit was a 2, 3, 4, or 5. A trial ended after 5000 ms 
or once participants made a response. Participants received an error 
message if they responded incorrectly or if their response times were 
<100 ms or >5000 ms. 

Participants completed 24 practice trials followed by four blocks of 
120 trials, for a total of 480 trials. One color (the high-probability optimal 
color) was the optimal color on 75% of trials while the other color (the 
low-probability optimal color) was the optimal color on the remaining 
25% of trials. Which color served as the high-probability optimal color 
was counterbalanced across participants. Previous studies have found 
that participants make a relatively low proportion of optimal choices 
(~60% or less) when they are not informed of the optimal strategy 
(Irons & Leber, 2016). Thus, participants were instructed that the fastest 
way to perform the task was to search for the color with the fewest 
squares. Critically, this allowed us to maximize our chances of observing 
any statistical learning effects by ensuring that participants made a 
sufficiently large proportion of optimal choices (Kim, Lee, & Anderson, 
2021). However, participants were not required to use the optimal 
strategy, and were free to choose which color to search for. Although 
participants were informed of the optimal strategy, they were not 
informed of the color contingencies. 

2.1.4. Self-reported strategy ratings 
After completing the experiment, participants were asked if they 

used any strategy when deciding which color to search for, and if so, 
whether they could explain this strategy. To further assess participants’ 
awareness of their own search strategies, participants then rated the 
approximate proportion of trials (0%, 20%, 40%, 60%, 80%, or 100%) 
on which they searched for the red target without switching to the other 
color (the red strategy), searched for the blue target without switching to 
the other color (the blue strategy), switched between searching for the 
two colors (the switch strategy), randomly searched for either of the two 
colors (the random strategy), or attempted to search for both colors at the 
same time (the simultaneous strategy). Ratings for each strategy were 

standardized by dividing by the sum of all ratings for each participant 
(Irons & Leber, 2018). Ratings for the first two strategies were recoded 
to measure how often participants reported searching for the high- 
probability or low-probability optimal color (the high-probability and 
low-probability strategy, respectively). 

2.1.5. Contingency awareness test 
After providing ratings for each strategy, participants were asked if 

they noticed any difference between the two colors, and if so, whether 
they could explain this difference. Participants were coded as noticing 
the color contingencies if they correctly identified the high-probability 
optimal color. Participants then completed a short test to further 
assess their awareness of these contingencies. On each trial, participants 
viewed two search displays (one high-probability and one low- 
probability display) and were asked to indicate which display they 
thought was more likely to appear during the experiment. To prevent 
participants from recognizing individual displays, all displays were 
novel, and did not appear during the experiment. Participants 
completed a total of 24 trials, and the location of the two displays was 
counterbalanced across trials. 

2.1.6. Data analysis 
We measured whether participants selected the optimal color on 

each trial, as well as accuracy and response times. Accuracy was 
computed as the proportion of trials on which participants correctly 
responded to either target, while the proportion of optimal choices was 
computed as the proportion of trials on which participants correctly 
responded to the target in the optimal color. Incorrect responses and 
response times <100 ms and >5000 ms were excluded from analysis. All 
dependent variables were analyzed using paired samples t-tests. To 
assess the time course of any statistical learning effects, we also analyzed 
the proportion of optimal choices using a 2 (trial type: high-probability, 
low-probability) × 4 (block: 1, 2, 3, 4) repeated measures analysis of 
variance (ANOVA). Significant interactions were followed by simple 
effects tests comparing high-probability and low-probability trials for 
each block. 

2.2. Results 

2.2.1. Behavioral data 
Accuracy was relatively high (M = 89.65%, SD = 7.27%), indicating 

that participants were correctly responding to the targets. Participants 
identified targets significantly faster on high-probability trials (M =
2346 ms, SD = 240 ms) compared to low-probability trials (M = 2510 
ms, SD = 237 ms), t (47) = − 8.75, p < .001, ηp

2 = .620. Participants also 
made a significantly larger proportion of optimal choices on high- 
probability trials (M = 78.03%, SD = 15.44%) compared to low- 
probability trials (M = 60.39%, SD = 20.25%), t (47) = 5.44, p <
.001, ηp

2 = .386. Thus, statistical learning facilitated both search for the 
targets and the optimal choice of attentional control settings (see Fig. 2A 
& B). To assess the time course of these effects, we next analyzed the 
proportion of optimal choices as a function of block. Consistent with the 
previous results, the analysis revealed a significant main effect of trial 
type, F (1, 47) = 28.85, p < .001, ηp

2 = .380. However, there was neither 
a significant main effect of block, F (3, 141) = 1.78, p = .155, ηp

2 = .036, 
nor a significant interaction between trial type and block, F (3, 141) =
0.81, p = .491, ηp

2 = .017. Thus, while statistical learning facilitated the 
optimal choice of attentional control settings, this effect did not differ as 
a function of block (see Fig. 3). 

2.2.2. Self-reported strategy ratings 
To assess participants’ awareness of their own search strategies, we 

analyzed ratings for the high-probability and low-probability strategies. 
A paired samples t-test revealed that ratings for the high-probability 
strategy (M = 28.74%, SD = 13.97%) were significantly greater than 
ratings for the low-probability strategy (M = 20.47%, SD = 8.60%), t 

Fig. 1. Example search display in Experiment 1.  
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(47) = 3.40, p = .001, ηp
2 = .197. Thus, participants reported searching 

for the high-probability optimal color more often than the low- 
probability optimal color. To further assess participants’ awareness of 
their own search strategies, we correlated ratings for each strategy with 
the proportion of optimal choices on both high-probability and low- 
probability trials (see Table 1). Ratings for the high-probability strat
egy were positively correlated with the proportion of optimal choices on 
high-probability trials, r = .309, p = .032. Thus, participants who re
ported searching for the high-probability optimal color made a larger 
proportion of optimal choices when this color was optimal. Ratings for 
the simultaneous strategy were also negatively correlated with the 
proportion of optimal choices on low-probability trials, r = − .387, p =
.007. Thus, participants who attempted to search for both colors at the 
same time made a smaller proportion of optimal choices when the low- 

probability optimal color was optimal. No other correlations were sig
nificant, all ps ≥ .080. Together, these results suggest that participants 
were somewhat aware of their own search strategies. 

2.2.3. Contingency awareness test 
Only 12 of the 48 participants reported explicitly noticing the color 

contingencies. To further assess participants’ awareness of these con
tingencies, we analyzed the proportion of trials on which participants 
indicated that a high-probability display was more likely to appear 
during the experiment. A one-sample t-test revealed that the proportion 
of these trials (M = 54.51%, SD = 23.20%) was not significantly 
different from chance, t (47) = 1.35, p = .184, ηp

2 = .039. Moreover, an 
independent samples t-test revealed that participants who noticed the 
color contingencies (M = 57.64%, SD = 29.24%) did not indicate that a 
high-probability display was more likely to appear during the experi
ment more often than participants who failed to notice these contin
gencies (M = 53.47%, SD = 21.21%), t (46) = 0.54, p = .596, ηp

2 = .006. 
Thus, participants did not appear to be aware of the color contingencies, 
and awareness was not higher for participants who reported explicitly 
noticing these contingencies. Lastly, to assess whether explicitly 
noticing the color contingencies modulated any of our effects, we re-ran 
all of our analyses with noticing entered as a between-subjects variable. 
There were no significant effects of noticing on response time, ps for all 
noticing effects ≥ .455. There was also no significant main effect of 
noticing for the proportion of optimal choices, F (1, 46) = 2.74, p = .104, 
ηp

2 = .056. However, there was a trending interaction between trial type 
and noticing for the proportion of optimal choices, F (1, 46) = 3.49, p =
.068, ηp

2 = .070. Simple effects tests revealed a significant main effect of 
trial type for participants who failed to notice the color contingencies, F 
(1, 35) = 33.52, p < .001, ηp

2 = .489. However, there was no significant 
main effect of trial type for participants who noticed the color contin
gencies, F (1, 11) = 1.35, p = .270, ηp

2 = .109. Thus, while explicitly 
noticing the color contingencies appeared to modulate our effects, these 
effects were strongest for participants who did not report noticing these 
contingencies. 

2.3. Discussion 

In Experiment 1, we found that statistical learning facilitated the 
strategic use of attentional control. Participants were faster to identify 
targets and made a larger proportion of optimal choices when the high- 
probability optimal color was optimal. Thus, statistical learning facili
tated both search for the targets and the optimal choice of attentional 
control settings. These effects emerged rapidly and did not diminish 
throughout the experiment. Interestingly, while participants were 
somewhat aware of their own search strategies, they displayed little 
awareness of the color contingencies. Moreover, while explicitly 

Fig. 2. (A) Average response times in Experiment 1. (B) The proportion of optimal choices in Experiment 1. Error bars reflect ±1 within-subjects standard error 
(Cousineau, 2005; Morey, 2008). 

Fig. 3. The proportion of optimal choices as a function of block in Experiment 
1. Error bars reflect ±1 within-subjects standard error (Cousineau, 2005; 
Morey, 2008). 

Table 1 
Correlations between ratings for each strategy and the proportion of optimal 
choices in Experiment 1.  

Strategy High-probability Low-probability 

High-probability strategy .309* − .005 
Low-probability strategy − .205 .255 
Switch strategy .035 − .008 
Random strategy − .152 .198 
Simultaneous strategy − .125 − .387** 

Notes. Values represent Pearson’s correlation coefficients. *p < .05. **p < .01. 
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noticing the color contingencies appeared to modulate our effects, these 
effects were strongest for participants who did not report noticing these 
contingencies (see Grégoire & Anderson, 2019, for similar findings 
regarding the effects of awareness on value-driven attention). Thus, 
awareness did not appear to play a substantial role in the present find
ings. Together, these findings suggest that statistical learning facilitates 
the strategic use of attentional control. 

3. Experiment 2 

In Experiment 1, statistical learning appeared to facilitate the stra
tegic use of attentional control. However, because the mostly optimal 
color was more likely to repeat from trial to trial, these findings may be 
due to the cumulative effects of intertrial priming rather than statistical 
learning (Maljkovic & Nakayama, 1994). Previous studies have 
attempted to address this issue by removing trials on which a statisti
cally learned feature repeats (Wang & Theeuwes, 2018a; Wang & 
Theeuwes, 2018b; Wang & Theeuwes, 2018c) or by equating the sta
tistical regularities in a test phase (Britton & Anderson, 2020; Cosman & 
Vecera, 2014; Jiang et al., 2013). In Experiment 2, we attempted to 
address this issue using a similar method. Participants completed the 
same task as in Experiment 1. In an initial training phase, one color was 
the optimal color on 75% of trials while the other color was the optimal 
color on the remaining 25% of trials. In a subsequent test phase, these 
color contingencies were equated. If the previous findings were due to 
statistical learning, we should observe similar effects in both the training 
and test phases. However, if the previous findings were due to intertrial 
priming, we should only observe these effects in the training phase. 

3.1. Methods 

3.1.1. Participants 
A new group of 79 participants from the Texas A&M community 

were recruited and tested online; however, 31 participants were 
excluded due to low accuracy (65% correct or less; n = 30), because they 
made a low proportion of optimal choices (50% or less; n = 17), or 
because they reported being colorblind (n = 1). Participants could be 
excluded for multiple reasons. The remaining 48 participants (23 fe
males; mean age = 19.5 years, SD = 1.8 years) were between the ages of 
18 and 35 and reported normal or corrected-to-normal visual acuity and 
normal color vision. All participants received course credit for partici
pating in the experiment. 

3.1.2. Apparatus and stimuli 
The apparatus and stimuli were identical to those in the previous 

experiment. 

3.1.3. Procedure and design 
The task was the same as in the previous experiment. In the first two 

blocks of the experiment (the training phase), one color was the optimal 
color on 75% of trials, while the other color was the optimal color on the 
remaining 25% of trials. In the last two blocks of the experiment (the test 
phase), the color contingencies were equated so that each color was the 
optimal color on 50% of trials. All other details of the experimental 
procedure were identical to those in the previous experiment. 

3.1.4. Data analysis 
The dependent variables were the same as in the previous experi

ment. However, all dependent variables were analyzed using 2 (phase: 
training, test) × 2 (trial type: high-probability, low-probability) 
repeated measures ANOVAs. Significant interactions were followed by 
simple effects tests comparing high-probability and low-probability 
trials for each phase. All other details of the analytical approach were 
identical to those in the previous experiment. 

3.2. Results 

3.2.1. Behavioral results 
Accuracy was relatively high (M = 88.20%, SD = 8.03%), indicating 

that participants were correctly responding to the targets. To test 
whether statistical learning facilitated search for the targets, we first 
analyzed average response times. The analysis revealed a significant 
main effect of phase, F (1, 47) = 45.07, p < .001, ηp

2 = .490, with par
ticipants identifying targets faster in the test phase (M = 2290 ms, SD =
212 ms) compared to the training phase (M = 2481 ms, SD = 292 ms). 
There was also a significant main effect of trial type, F (1, 47) = 17.36, p 
< .001, ηp

2 = .270, with participants identifying targets faster on high- 
probability trials (M = 2339 ms, SD = 256 ms) compared to low- 
probability trials (M = 2432 ms, SD = 240 ms). Moreover, these ef
fects were qualified by a significant interaction between phase and trial 
type, F (1, 47) = 6.95, p = .011, ηp

2 = .129. Simple effects tests revealed a 
significant main effect of trial type in the training phase, F (1, 47) =
23.26, p < .001, ηp

2 = .331, with participants identifying targets faster on 
high-probability trials (M = 2419 ms, SD = 235 ms) compared to low- 
probability trials (M = 2544 ms, SD = 226 ms). There was also a sig
nificant main effect of trial type in the test phase, F (1, 47) = 6.01, p =
.018, ηp

2 = .113, with participants identifying targets faster on high- 
probability trials (M = 2260 ms, SD = 320 ms) compared to low- 
probability trials (M = 2320 ms, SD = 288 ms). However, this effect 
was smaller than the main effect of trial type in the training phase. Thus, 
while statistical learning facilitated search for the targets in both the 
training and test phases, this effect was reduced in the test phase (see 
Fig. 4A). 

To test whether statistical learning facilitated the optimal choice of 
attentional control settings, we next analyzed the proportion of optimal 
choices. The analysis revealed a significant main effect of phase, F (1, 
47) = 5.35, p = .025, ηp

2 = .102, with participants making a larger 
proportion of optimal choices in the training phase (M = 73.23%, SD =
17.96%) compared to the test phase (M = 68.96%, SD = 16.25%). There 
was also a significant main effect of trial type, F (1, 47) = 5.17, p = .028, 
ηp

2 = .099, with participants making a larger proportion of optimal 
choices on high-probability trials (M = 74.37%, SD = 18.12%) 
compared to low-probability trials (M = 67.81%, SD = 19.39%). How
ever, there was no significant interaction between phase and trial type, F 
(1, 47) = 0.40, p = .531, ηp

2 = .008. Thus, statistical learning facilitated 
the optimal choice of attentional control settings in both the training and 
test phases (see Fig. 4B). 

Lastly, to assess the time course of these effects, we analyzed the 
proportion of optimal choices as a function of block. Consistent with the 
previous results, the analysis revealed a significant main effect of trial 
type, F (1, 47) = 5.09, p = .029, ηp

2 = .098. There was also a significant 
main effect of block, F (3, 141) = 5.04, p = .002, ηp

2 = .097. Bonferroni- 
corrected pairwise comparisons revealed that participants made a 
significantly larger proportion of optimal choices in the first block (M =
74.61%, SD = 18.64%) compared to the last block (M = 67.87%, SD =
16.79%), p = .024. No other pairwise comparisons were significant, all 
ps ≥ .108. Lastly, these effects were qualified by a significant interaction 
between trial type and block, F (3, 141) = 3.76, p = .012, ηp

2 = .074. 
Simple effects tests revealed a significant main effect of trial type in both 
the second, F (1, 47) = 8.87, p = .005, ηp

2 = .159, and third blocks, F (1, 
47) = 6.82, p = .012, ηp

2 = .127. However, there was no significant main 
effect of trial type in either the first, F (1, 47) = 2.68, p = .109, ηp

2 = .054, 
or last blocks, F (1, 47) = 0.07, p = .792, ηp

2 = .001. Thus, while statistical 
learning facilitated the optimal choice of attentional control settings, 
this effect did not emerge until the second block and was no longer 
observed by the last block (see Fig. 5). 

3.2.2. Self-reported strategy ratings 
To assess participants’ awareness of their own search strategies, we 

analyzed ratings for the high-probability and low-probability strategies. 
A paired samples t-test revealed that ratings for the high-probability 
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strategy (M = 27.65%, SD = 11.73%) were significantly greater than 
ratings for the low-probability strategy (M = 21.12%, SD = 8.82%), t 
(47) = 3.13, p = .003, ηp

2 = .172. Thus, participants reported searching 
for the high-probability optimal color more often than the low- 
probability optimal color. To further assess participants’ awareness of 
their own search strategies, we correlated ratings for each strategy with 
the proportion of optimal choices on both high-probability and low- 
probability trials (see Table 2). Ratings for the high-probability strat
egy were positively correlated with the proportion of optimal choices on 
high-probability trials, r = .344, p = .017, and ratings for the low- 
probability strategy were positively correlated with the proportion of 
optimal choices on low-probability trials, r = .377, p = .008. Thus, 
participants who reported searching for either the high-probability or 

low-probability optimal color made a larger proportion of optimal 
choices when this color was optimal. Ratings for the simultaneous 
strategy were also negatively correlated with the proportion of optimal 
choices on both high-probability, r = − .435, p = .002, and low- 
probability trials, r = − .379, p = .008. Thus, participants who attemp
ted to search for both colors at the same time made a smaller proportion 
of optimal choices overall. No other correlations were significant, all ps 
≥ .348. Together, these results suggest that participants were generally 
aware of their own search strategies. 

3.2.3. Contingency awareness test 
Only 4 of the 48 participants reported explicitly noticing the color 

contingencies. To further assess participants’ awareness of these con
tingencies, we analyzed the proportion of trials on which participants 
indicated that a high-probability display was more likely to appear 
during the experiment. A one-sample t-test revealed that the proportion 
of these trials (M = 60.59%, SD = 23.20%) was significantly greater than 
chance, t (47) = 2.90, p = .006, ηp

2 = .152. Thus, participants appeared to 
be generally aware of the color contingencies. However, an independent 
samples t-test revealed that participants who noticed the color contin
gencies (M = 56.25%, SD = 5.38%) did not indicate that a high- 
probability display was more likely to appear during the experiment 
more often than participants who failed to notice these contingencies 
(M = 60.98%, SD = 26.42%), t (46) = − 0.35, p = .725, ηp

2 = .003. Lastly, 
to assess whether explicitly noticing the color contingencies modulated 
any of our effects, we re-ran all of our analyses with noticing entered as a 
between-subjects variable. There were no significant effects of noticing, 
ps for all noticing effects ≥ .093. However, given the small number of 
participants who noticed the color contingencies, it is likely that our 
analyses were underpowered to observe any effects of noticing in this 
experiment. 

3.3. Discussion 

In Experiment 2, we again found that statistical learning facilitated 
the strategic use of attentional control. As in the previous experiments, 
participants were faster to identify targets and made a larger proportion 
of optimal choices when the high-probability optimal color was optimal. 
Thus, statistical learning facilitated both search for the targets and the 
optimal choice of attentional control settings. Moreover, these effects 
were observed in both the training and test phases. The magnitude of the 
response time effect was reduced in the test phase, suggesting that 
intertrial priming may have played a role in this effect. However, 
because this effect was not eliminated in the test phase, we think it 
cannot purely be due to intertrial priming. Moreover, because the 
magnitude of the optimal choice effect did not differ between the 
training and test phases, we think it unlikely that this effect was due to 

Fig. 4. (A) Average response times in Experiment 2. (B) The proportion of optimal choices in Experiment 2. Error bars in both panels reflect ±1 within-subjects 
standard error (Cousineau, 2005; Morey, 2008). 

Fig. 5. The proportion of optimal choices as a function of block in Experiment 
2. The training phase consisted of the first two blocks, while the test phase 
consisted of the last two blocks. Error bars reflect ±1 within-subjects standard 
error (Cousineau, 2005; Morey, 2008). 

Table 2 
Correlations between ratings for each strategy and the proportion of optimal 
choices in Experiment 2.  

Strategy High-probability Low-probability 

High-probability strategy .344* .094 
Low-probability strategy <.001 .377** 
Switch strategy − .050 .071 
Random strategy .067 − .138 
Simultaneous strategy − .435** − .379** 

Notes. Values represent Pearson’s correlation coefficients. *p < .05. **p < .01. 
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intertrial priming. Unlike the previous experiment, these effects did not 
emerge until the second block and were no longer observed by the last 
block. Thus, the effects of statistical learning emerged gradually and 
diminished when the color contingencies were equated. Lastly, while 
participants were generally aware of both their own search strategies 
and the color contingencies, our analyses were underpowered to observe 
any effects of noticing in this experiment. Together, these findings 
suggest that the previous findings were due to statistical learning rather 
than intertrial priming. 

4. Experiment 3 

In the previous experiments, statistical learning appeared to facili
tate the strategic use of attentional control. However, because partici
pants were more likely to search for the high-probability optimal color, 
these findings may be due to attentional capture by this color rather than 
the strategic use of attentional control. Indeed, previously task-relevant 
stimuli have been shown to capture attention when they appear as dis
tractors in a test phase (Kyllingsbæk, Schneider, & Bundesen, 2001; 
Kyllingsbæk, Van Lommel, Sørenson, & Bundesen, 2014; Shiffrin & 
Schneider, 1977). In Experiment 3, we attempted to address this issue 
using a similar method. Participants completed the same task as in 
Experiment 1. In an initial training phase, participants searched for a red 
or blue target among green distractors. In a subsequent test phase, 
participants searched for a single green target among red or blue dis
tractors. If the previous findings were due to attentional capture by the 
high-probability optimal color, participants should be slower to identify 
the target when this color appears as a distractor in the test phase. 
However, if the previous findings were due to the strategic use of 
attentional control, we should not observe these effects in the test phase. 

4.1. Methods 

4.1.1. Participants 
A new group of 86 participants from the Texas A&M community 

were recruited and tested online; however, 38 participants were 
excluded due to low accuracy (65% correct or less; n = 23), because they 
made a low proportion of optimal choices (50% or less; n = 24), or 
because they reported being colorblind (n = 1). Participants could be 
excluded for multiple reasons. The remaining 48 participants (33 fe
males; mean age = 18.7 years, SD = 0.9 years) were between the ages of 
18 and 35 and reported normal or corrected-to-normal visual acuity and 
normal color vision. All participants received course credit for partici
pating in the experiment. 

4.1.2. Apparatus and stimuli 
The apparatus and stimuli were the same as in the previous experi

ments. In the first two blocks of the experiment (the training phase), the 
search display contained 14 green squares and either 13 red squares and 
27 blue squares (red optimal trials) or 27 red squares and 13 blue 
squares (blue optimal trials). However, in the last two blocks of the 
experiment (the test phase), the search display contained 27 green 
squares and either 27 red squares or 27 blue squares (see Fig. 6). One 
green target square contained a digit between 2 and 5. All other green 
squares contained digits between 6 and 9. Red and blue squares were 
task-irrelevant, and contained digits between 2 and 9 to prevent par
ticipants from searching based on digit identity alone. All other details of 
the apparatus and stimuli were identical to those in the previous 
experiments. 

4.1.3. Procedure and design 
The task was the same as in the previous experiments. In the training 

phase, participants were instructed to search for the red or blue target 
square and identify the digit located within this square. However, in test 
phase, participants were instructed to search for the green target square 
and identify the digit located within this square. Participants pressed the 

“z,” “x,” “n,” or “m” keys to identify whether this digit was a 2, 3, 4, or 5. 
A trial ended after 7000 ms or once participants made a response. Par
ticipants received an error message if they responded incorrectly or if 
their response times were <100 ms or >7000 ms. All other details of the 
experimental procedure were identical to those in the previous 
experiments. 

4.1.4. Data analysis 
The dependent variables were the same as in the previous experi

ments. However, because participants searched for a single green target 
in the test phase, the proportion of optimal choices was only analyzed in 
the training phase. Incorrect responses and response times <100 ms and 
>7000 ms were excluded from analysis in the test phase. All dependent 
variables in the training and test phases were analyzed using paired 
samples t-tests. To assess the time course of any statistical learning ef
fects, we also analyzed the proportion of optimal choices using a 2 (trial 
type: high-probability, low-probability) x 2 (block: 1, 2) repeated mea
sures ANOVA. All other details of the analytical approach were identical 
to those in the previous experiments. 

4.2. Results 

4.2.1. Behavioral results 
Accuracy was relatively high (M = 90.51%, SD = 7.59%), indicating 

that participants were correctly responding to the targets. To test 
whether statistical learning facilitated search for the targets and the 
optimal choice of attentional control settings, we first analyzed average 
response times and the proportion of optimal choices in the training 
phase. Participants identified targets significantly faster on high- 
probability trials (M = 2303 ms, SD = 261 ms) compared to low- 
probability trials (M = 2400 ms, SD = 270 ms), t (47) = − 3.14, p =
.003, ηp

2 = .174. Participants also made a significantly larger proportion 
of optimal choices on high-probability trials (M = 81.16%, SD =
15.49%) compared to low-probability trials (M = 67.48%, SD =
25.86%), t (47) = 3.51, p < .001, ηp

2 = .208. Thus, statistical learning 
facilitated both search for the targets and the optimal choice of atten
tional control settings (see Fig. 7A & B). To assess the time course of 
these effects, we next analyzed the proportion of optimal choices in the 
training phase as a function of block. Consistent with the previous re
sults, the analysis revealed a significant main effect of trial type, F (1, 
47) = 12.67, p < .001, ηp

2 = .212. However, there was neither a signif
icant main effect of block, F (1, 47) = 0.38, p = .539, ηp

2 = .008, nor a 
significant interaction between trial type and block, F (1, 47) = 0.06, p 
= .810, ηp

2 = .001. Thus, while statistical learning facilitated the optimal 
choice of attentional control settings, this effect did not differ as a 

Fig. 6. Example search display in the test phase of Experiment 3.  
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function of block (see Fig. 8). 
Lastly, to test whether the high-probability color captured attention 

when it appeared as a distractor, we analyzed average response times in 
the test phase. Participants were not significantly slower to identify the 
target on high-probability trials (M = 2943 ms, SD = 367 ms) compared 
to low-probability trials (M = 2931 ms, SD = 353 ms), t (49) = 0.42, p =
.678, ηp

2 = .004. A Bayes factor analysis (Rouder, Speckman, Sun, Morey, 
& Iverson, 2009) indicated that the null hypothesis was 5.87 times more 
likely to account for the observed data than the alternative hypothesis 
that there was a significant difference between the mostly optimal and 
mostly non-optimal color, BF10 = 0.17. Thus, the high-probability 
optimal color did not appear to capture attention when it appeared as 
a distractor (see Fig. 7C). 

4.2.2. Self-reported strategy ratings 
To assess participants’ awareness of their own search strategies, we 

analyzed ratings for the high-probability and low-probability strategies. 
A paired samples t-test revealed that ratings for the high-probability 
strategy (M = 32.98%, SD = 15.44%) were significantly greater than 
ratings for the low-probability strategy (M = 19.16%, SD = 10.32%), t 
(47) = 4.88, p < .001, ηp

2 = .337. Thus, participants reported searching 
for the high-probability optimal color more often than the low- 
probability optimal color. To further assess participants’ awareness of 
their own search strategies, we correlated ratings for each strategy with 
the proportion of optimal choices on high-probability and low- 
probability trials (see Table 3). Ratings for the high-probability strat
egy were positively correlated with the proportion of optimal choices on 
high-probability trials, r = .603, p < .001, and negatively correlated 
with the proportion of optimal choices on low-probability trials, r =
− .288, p = .048. Ratings for the low-probability strategy were also 

positively correlated with the proportion of optimal choices on low- 
probability trials, r = .634, p < .001. Thus, participants who reported 
searching for either the high-probability or low-probability optimal 
color made a larger proportion of optimal choices when this color was 
optimal. Moreover, participants who reported searching for the high- 
probability optimal color made a smaller proportion of optimal 
choices when the low-probability optimal color was optimal. Ratings for 
the simultaneous strategy were also negatively correlated with the 
proportion of optimal choices on high-probability trials, r = − .435, p =
.002. Thus, participants who attempted to search for both colors at the 
same time made a smaller proportion of optimal choices when the high- 
probability optimal color was optimal. No other correlations were sig
nificant, all ps ≥ .348. Together, these results suggest that participants 
were generally aware of their own search strategies. 

4.2.3. Contingency awareness test 
Only 8 of the 48 participants reported explicitly noticing the color 

contingencies. To further assess participants’ awareness of these con
tingencies, we analyzed the proportion of trials on which participants 
indicated that a high-probability display was more likely to appear 
during the experiment. A one-sample t-test revealed that the proportion 
of these trials (M = 55.30%, SD = 25.67%) was not significantly greater 
than chance, t (47) = 1.43, p = .160, ηp

2 = .042. Moreover, an inde
pendent samples t-test revealed that participants who noticed the color 
contingencies (M = 66.67%, SD = 22.16%) did not indicate that a high- 
probability display was more likely to appear during the experiment 
more often than participants who failed to notice these contingencies 
(M = 53.02%, SD = 25.96%), t (46) = 1.39, p = .172, ηp

2 = .040. Thus, 
participants did not appear to be aware of the color contingencies, and 
awareness was not higher for participants who reported explicitly 
noticing these contingencies. Lastly, to assess whether explicitly 
noticing the color contingencies modulated any of our effects, we re-ran 
all of our analyses with noticing entered as a between-subjects variable. 
There were no significant effects of noticing, ps for all noticing effects ≥
.154. Thus, explicitly noticing the color contingencies did not appear to 
modulate any of our effects. 

Fig. 7. (A) Average response times in the training phase of Experiment 3. (B) The proportion of optimal choices in the training phase of Experiment 3. (C) Average 
response times in the test phase of Experiment 3. Error bars in all panels reflect ±1 within-subjects standard error (Cousineau, 2005; Morey, 2008). 

Fig. 8. The proportion of optimal choices as a function of block in the training 
phase of Experiment 3. Error bars reflect ±1 within-subjects standard error 
(Cousineau, 2005; Morey, 2008). 

Table 3 
Correlations between ratings for each strategy and the proportion of optimal 
choices in Experiment 3.  

Strategy High-probability Low-probability 

High-probability strategy .603*** − .288* 
Low-probability strategy .045 .634*** 
Switch strategy − .277 .248 
Random strategy − .190 − .285 
Simultaneous strategy − .459** − .087 

Notes. Values represent Pearson’s correlation coefficients. *p < .05. **p < .01, 
***p < .001. 
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4.3. Discussion 

In Experiment 3, we again found that statistical learning facilitated 
the strategic use of attentional control. As in the previous experiment, 
participants were faster to identify targets and made a larger proportion 
of optimal choices when the high-probability optimal color was optimal. 
Thus, statistical learning facilitated both search for the targets and the 
optimal choice of attentional control settings. These effects emerged 
rapidly and did not diminish throughout the experiment. However, 
participants were not slower to identify targets when the high- 
probability optimal color appeared as a distractor in the test phase. 
Lastly, while participants were generally aware of their own search 
strategies, they displayed little awareness of the color contingencies. 
Moreover, explicitly noticing the color contingencies did not appear to 
modulate any of our effects. Thus, as in the previous experiments, 
awareness did not appear to play a substantial role in the present find
ings. Together, these findings suggest that the previous findings were 
due to the strategic use of attentional control rather than attentional 
capture by the high-probability optimal color. 

5. General discussion 

A growing body of research suggests that observers rely on a variety 
of suboptimal strategies when searching for objects (Irons & Leber, 
2016, 2018; see also Nowakowska et al., 2017). However, real-world 
environments contain a variety of statistical regularities that enable 
more efficient processing of information. In the present study, we 
examined whether statistical learning can facilitate the strategic use of 
attentional control using a modified version of the ACVS task. Partici
pants were faster to identify targets and made a larger proportion of 
optimal choices when the high-probability optimal color was optimal. 
Thus, statistical learning facilitated both search for the targets and the 
optimal choice of attentional control settings. These effects persisted 
when the color contingencies were equated, suggesting that these 
findings were not simply due to intertrial priming (Maljkovic & 
Nakayama, 1994). Moreover, participants were not slower to identify 
targets when the high-probability optimal color appeared as a distractor, 
suggesting that these findings were not due to attentional capture by this 
color (Kyllingsbæk et al., 2001; Kyllingsbæk et al., 2014; Shiffrin & 
Schneider, 1977). Together, these findings suggest that statistical 
learning can facilitate the strategic use of attentional control by biasing 
which features observers choose to search for. 

Overall, the present findings provide important evidence regarding 
the strategic use of attentional control. Previous studies have largely 
focused on individual differences in attentional control strategy (see 
Irons & Leber, 2020, for a review). For example, Irons and Leber (2016, 
2018) found that participants rely on a variety of suboptimal strategies, 
with some participants repeatedly searching for the same color and 
others frequently switching between colors. These strategies appear to 
be stable within individuals, and can be observed across multiple testing 
sessions (Irons & Leber, 2018). However, these strategies do not appear 
to be correlated with participants’ cognitive abilities (Irons & Leber, 
2016, 2018) or performance in other visual search tasks (Clarke, Irons, 
James, Leber, & Hunt, 2022). Thus, it is unclear why observers choose to 
adopt different search strategies. In the present study, we found that 
statistical learning facilitated the optimal choice of attentional control 
settings. These findings suggest that statistical learning plays an 
important role in the strategic use of attentional control, regardless of 
individual differences in attentional control strategy. 

Notably, the present findings also provide important evidence 
regarding the effects of selection history on attention. While selection 
history has largely been studied by examining involuntary attentional 
biases for task-irrelevant stimuli (e.g., Anderson et al., 2021), the goal- 
directed control of attention has largely been studied by examining the 
voluntary allocation of attention to task-relevant stimuli (e.g., Corbetta 
& Shulman, 2002). However, few studies have examined the effects of 

selection history on the goal-directed control of attention. In the present 
study, we found that statistical learning facilitated both search for the 
targets and the optimal choice of attentional control settings. These 
findings add to a growing body of research suggesting that selection 
history can influence the goal-directed control of attention. For example, 
recent evidence suggests that reward learning can also influence the 
optimal choice of attentional control settings (Lee, Kim, & Anderson, 
2022). Along with the present findings, these findings suggest that se
lection history plays an important role in determining which features 
observers choose to search for. 

In addition to these findings, the present findings provide new evi
dence regarding the effects of statistical learning on attention. Previous 
evidence suggests that statistical learning plays an important role in the 
allocation of attention. For example, observers are faster at identifying 
targets (Geng & Behrmann, 2002, 2005; Jiang et al., 2013) and are more 
efficient at suppressing salient distractors (Britton & Anderson, 2020; 
Wang & Theeuwes, 2018a, 2018b, 2018c) when these objects appear at 
high-probability locations. Observers are also faster to identify targets 
when they appear at locations that contain statistical regularities, sug
gesting that attention is automatically biased toward these regularities 
(Zhao et al., 2013). However, it is unclear whether statistical learning 
can influence the strategic use of attentional control. In the present 
study, we found that statistical learning facilitated both search for the 
targets and the optimal choice of attentional control settings. These 
findings not only provide converging evidence for the effects of statis
tical learning on attention, but also suggest that statistical learning plays 
an important role in determining which features observers choose to 
search for (see also Cosman & Vecera, 2014). 

Notably, the present findings differ from some previous studies, 
which suggest that the effects of statistical learning are often indepen
dent of observers’ task goals. For example, Wang and Theeuwes (2018a) 
found that participants were more efficient at suppressing salient dis
tractors when these objects appeared at high-probability locations. 
Critically, these effects were observed regardless of participants’ search 
strategies, suggesting that statistical learning influenced attention 
independently of observers’ task goals (Wang & Theeuwes, 2018b, 
2018c). However, the salient distractor in these studies was always 
irrelevant to observers’ task. Notably, there is some evidence that sta
tistical learning can influence the goal-directed control of attention 
when a statistically learned feature is task-relevant. For example, Cos
man and Vecera (2014) found that participants were faster to identify a 
target when it was preceded by a valid cue. Critically, the magnitude of 
this effect was larger when the cue was presented in a high-probability 
target color, suggesting that observers adopted an attentional set based 
on statistical learning. In the present study, the optimal color was always 
relevant to observers’ task. Thus, consistent with previous evidence, 
statistical learning can influence the goal-directed control of attention 
when a statistically learned feature is task-relevant. 

In the present study, we assume that statistical learning biased which 
features observers choose to search for. However, it is also possible that 
statistical learning influenced attention at an earlier stage of processing. 
Previous evidence suggests that the ability to actively monitor, or 
appraise, the environment plays an important role in the strategic use of 
attentional control. For example, Hansen, Irons, and Leber (2019) had 
participants complete a modified version of the ACVS task in which they 
viewed a colored preview of the display on each trial. Critically, par
ticipants made a relatively large proportion of optimal choices in this 
task, suggesting that providing a colored preview facilitated observers’ 
ability to appraise the environment. However, the magnitude of this 
effect was reduced when participants completed a secondary task during 
the preview period, suggesting that this task interfered with the envi
ronmental appraisal process. It is possible that statistical learning may 
also influence observers’ ability to appraise the environment, allowing 
them to make a larger proportion of optimal choices in the high- 
probability optimal color. While the present study was not designed to 
address this possibility, future work should attempt to clarify the role of 
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environmental appraisal in the present findings. 
Although statistical learning facilitated the optimal choice of atten

tional control settings, the time course of these effects differed across our 
experiments. In Experiments 1 and 3, these effects emerged rapidly and 
did not diminish throughout the experiment. However, in Experiment 2, 
these effects emerged gradually and diminished when the color con
tingencies were equated. Previous evidence suggests that the effects of 
statistical learning often diminish when the statistical regularities are 
equated, suggesting that observers gradually readjust to the changing 
regularities (Cosman & Vecera, 2014). This likely explains why the ef
fects of statistical learning diminished when the color contingencies 
were equated in Experiment 2. However, it is unclear why these effects 
emerged at different rates across our experiments. It is likely that there 
are individual differences in the time course of these effects, and that we 
randomly sampled a group of participants who were slower to learn the 
color contingencies in Experiment 2. Previous evidence suggests that the 
effects of statistical learning often emerge gradually (Chun & Jiang, 
1998, 2003; Jiang et al., 2013), although there is some evidence that 
these effects can emerge rapidly under certain conditions (Wang & 
Theeuwes, 2018a). Thus, there is at least some variation in the time 
course of these effects. Nonetheless, future work should attempt to 
clarify why the time course of these effects differed across our 
experiments. 

Lastly, it is worth noting that participants in the present study 
appeared to be generally aware of their own search strategies. This is 
consistent with previous evidence, which suggests that observers’ self- 
reported strategy ratings often correlate with their own search 
behavior (Irons & Leber, 2018). However, while participants were 
generally aware of their own search strategies, they displayed little 
awareness of the color contingencies. What can account for this 
apparent discrepancy in findings? Critically, although participants were 
generally aware of their own search strategies, this does not mean that 
these strategies were driven by explicit awareness of the color contin
gencies. Indeed, while explicitly noticing the color contingencies 
modulated some of our effects, these effects were strongest for partici
pants who did not report noticing these contingencies. Previous evi
dence suggests that the effects of statistical learning are often implicit, 
and can be observed in the absence of explicit awareness (Chun & Jiang, 
1998, 2003; Jiang et al., 2013; Wang & Theeuwes, 2018a). Thus, it is 
unlikely that awareness played a substantial role in the present findings. 
Nonetheless, future work should attempt to clarify the role of awareness 
in the present findings, as well as the relationship between awareness 
and selection history in general (see also Anderson et al., 2021). 

In summary, we found that statistical learning facilitated the stra
tegic use of attentional control. Participants were faster to identify tar
gets and made a larger proportion of optimal choices when the high- 
probability optimal color was optimal. Thus, statistical learning facili
tated both search for the targets and the optimal choice of attentional 
control settings. These effects persisted when the color contingencies 
were equated, suggesting that these findings were not simply due to 
intertrial priming. Moreover, participants were not slower to identify 
targets when the high-probability optimal color appeared as a distractor, 
suggesting that these findings were not due to attentional capture by this 
color. Together, these findings suggest that statistical learning can 
facilitate the strategic use of attentional control, and provide important 
evidence regarding the effects of selection history on attention. Specif
ically, selection history can not only produce involuntary attentional 
biases for task-irrelevant stimuli, but can also bias which features ob
servers choose to search for. Thus, selection history provides one 
possible explanation for why observers choose to adopt different search 
strategies. 
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