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Statistical regularities in distractor location trigger suppression of high-probability distractor locations
during visual search. The degree to which such suppression reflects generalizable, persistent changes in
a spatial priority map has not been examined. We demonstrate that suppression of high-probability
distractor locations persists after location probabilities are equalized and likely reflects a genuine
reshaping of the priority map rather than more transient effects of selection history. Statistically learned
suppression generalizes across contexts within a task during learning but does not generalize between
task paradigms using unrelated stimuli in identical spatial locations. These findings suggest that stimulus
features do play a role in learned spatial suppression, potentially gating the weights applied to a spatial
priority map. However, the binding of location to context during learning is not automatic, in contrast to
the previously reported interaction of location-based statistical learning and stimulus features.

Public Significance Statement
With practice, people can learn to ignore locations in space that are likely to contain distracting
information. We show that such learning has a persistent influence on attention that generalizes
across context during learning but fails to generalize to new contexts not experienced during learning.

Keywords: statistical learning, distractor suppression, spatial attention, attentional capture, contextual
learning

At any given moment, a plethora of irrelevant but physically
salient visual stimuli compete for our limited attention. To prune
the overwhelming variety of available input, observers must learn
to prioritize some signals over others and subsequently filter out
unwanted information. The priority map model of visual attention
contends that objects in space are assigned priority signals based
on salience, location, selection history, and the individual’s goal
state then weighted correspondingly for winner-take-all visual
selection. Search efficiency is improved when targets are weighted
substantially more heavily than nontargets (Zelinsky & Bisley,
2015); efficient downregulation of distractors and distractor-heavy
regions of space therefore quickens search.

Spatial regularities in visual input, such as a target appearing
more frequently in one region of visual space, are implicitly

learned over repeated exposures (Schapiro & Turk-Browne, 2015);
this learning, or spatial probability cueing, then translates into
more-efficient stimulus prioritization (Geng & Behrmann, 2002).
Statistical learning appears to regulate the intensity of representa-
tion in the spatial priority map such that high-frequency target
locations are more heavily weighted for selection (Druker &
Anderson, 2010; Ferrante et al., 2018; Geng & Behrmann, 2005;
see Jiang, 2018 for a review). Rewarding participants for orienting
to a particular region of space can similarly bias attention toward
that region (Anderson & Kim, 2018a, 2018b; Chelazzi et al.,
2014). The effects of spatial probability cueing on target selection
have been well-characterized: Biased target selection persists for
up to a week or hundreds of trials (Jiang, Swallow, & Rosenbaum,
2013; Jiang, Swallow, Rosenbaum, & Herzig, 2013) and is mod-
erately generalizable between closely related tasks (Jiang, Swal-
low, Won, Cistera, & Rosenbaum, 2015; Salovich, Remington, &
Jiang, 2018).

Recently a number of studies have demonstrated an apparently
parallel effect by which high-frequency distractor locations are
selectively suppressed, such that physically salient distractors
in these locations capture attention relatively weakly (Failing,
Feldmann-Wüstefeld, Wang, Olivers, & Theeuwes, 2019; Goschy,
Bakos, Müller, & Zehetleitner, 2014; Sauter et al., 2019; Wang &
Theeuwes, 2018a, 2018b, 2018c; Wang, Samara, & Theeuwes,
2019). This suppression is not the product of biased target selec-
tion (Failing, Wang, & Theeuwes, 2019). Instead, statistically
learned distractor suppression and target selection appear to tap a
common spatial priority map, such that manipulating target loca-
tion probability affects distractor filtration efficiency and vice
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versa (Ferrante et al., 2018). Thus, it is possible that features of
probability-cued target selection also manifest in distractor sup-
pression. However, the degree to which location-based distractor
suppression genuinely parallels target cueing is unknown.

From prior studies of learned spatial suppression, it is evident
that stimulus features, such as target shape or distractor color,
appear to bind to stimulus location during statistical learning, such
that location-based distractor suppression is moderated by stimulus
color (Failing et al., 2019). However, learned location-based dis-
tractor suppression has only been examined in a single task context
in which the stimuli and location contingencies remain constant
(e.g., Wang & Theeuwes, 2018a, 2018b, 2018c). The role of task
context in the learning and expression of experience-dependent
attentional biases has been examined with respect to value-based
attention, search modes, and contextual cuing (e.g., Anderson,
2015; Brooks, Rasmussen, & Hollingworth, 2010; Cosman &
Vecera, 2013) but has not been examined in the case of location-
based distractor suppression. In the present study, we probed
whether different high-probability distractor locations could be
suppressed in a context-specific manner when the context pre-
dicted which location was likely to contain a distractor (Experi-
ment 1) in addition to whether spatial suppression learned in one
task context would generalize to stimulus processing in a novel
task context (Experiment 3). To validate our experimental ap-
proach, we also confirmed that suppression of a high-probability
distractor location reflects genuine attentional learning that persists
into a period of extinction (Experiment 2).

Experiment 1

In addition to target and distractor location, contextual informa-
tion appears to influence attentional learning during visual search
such that the priority given to stimulus features depends on the
background image against which the search display is presented
(Anderson, 2015; Cosman & Vecera, 2013). Specifically, contex-
tual information can gate learning-dependent biases in feature-
based attention (Anderson, 2015; Cosman & Vecera, 2013), as
well as gating which memory representations guide search in
contextual cuing of target location (Brooks et al., 2010). However,
in each of these cases, context is a perfect trial-by-trial predictor of
the information that guides attention (e.g., which color is high-
value, whether or not the target will be identifiable by a unique
feature). It is presently unknown whether contextual information
binds to location information during statistical learning of high-
probability distractor locations, which is necessarily integrated
over trials: Prior studies of spatial suppression (e.g., Wang &
Theeuwes, 2018a, 2018b, 2018c) have presented their search dis-
plays within a single task context.

In Experiment 1, we examined statistical learning-based distrac-
tor suppression in context. Stimuli were superimposed on either of
two background images, each of which was paired with a different
high-probability distractor location. We assessed response speed
when the distractor appeared in the context-matched high-
probability distractor location versus the context-mismatched
high-probability distractor location or a location in which the
distractor appeared with low probability across both contexts. If
statistical learning-based suppression is context-dependent, sup-
pression should be specific to the high-probability location within
a particular context; conversely, in the absence of context-

dependent learning, both high-probability distractor locations
should be similarly suppressed regardless of context.

Method

Participants. Forty-two participants were recruited from the
Texas A&M University community. All participants were between
the ages of 18 and 35, and all reported normal or corrected-to-
normal visual acuity and color vision. After excluding participants
with low accuracy (see Analysis), the final sample size was 35 (21
female, mean age � 18.9, SD � 1.5). Participants were compen-
sated with course credit. All procedures were approved by the
Texas A&M University Institutional Review Board and conformed
to the principles outlined in the Declaration of Helsinki. Given a
target effect size estimated at d � 0.602, which was taken from the
difference between color-matching and color-mismatching distrac-
tors appearing at a high-probability location (Failing et al., 2019),
a sample size of at least 31 participants would yield � � 0.90 with
� set to 0.05 (computed using G�Power 3.1); all reported experi-
ments exceeded this minimal sample size.

Apparatus. Stimuli were generated using MATLAB 2017
(MathWorks, Natick, MA, U.S.A.) and Psychophysics Toolbox
extensions (Brainard, 1997) then presented on a Dell P2717H
monitor linked to a Dell OptiPlex 7040 (Dell, Round Rock, TX,
U.S.A.). Participants viewed the monitor from a distance of ap-
proximately 70 cm in a dimly lit room. Responses were registered
when the participant pressed the corresponding key on a standard
keyboard.

Stimuli. On each trial a search display consisting of six shapes
(each approximately 3.3° � 3.3°) was spaced regularly around an
imaginary circle with a radius of 7.4° centered on a fixation cross.
The target (a shape singleton) was a circle among five diamonds or
vice versa (50% probability). On a subset of trials, a distractor was
present. The distractor (a color singleton) was red while all other
shapes were green, or vice versa (50% probability). Target shape
was uncorrelated with distractor color, such that all possible com-
binations appeared equally often. Stimuli were not matched for
luminance. The target shape contained a horizontal or vertical line
segment (1.2 ° � 0.16°), whereas nontarget shapes contained a
diagonal line segment oriented 45° to the left or right (1.6° �
0.16°).

Each search display was superimposed on a black-and-white
photograph of a forest or a city (50% probability), henceforth the
“context,” as in Anderson (2015; see also Cosman & Vecera,
2013). Context was fully uncorrelated with target shape or (if
present) distractor color. One photograph was used for each con-
text and were the same photographs used in Anderson (2015; see
Figure 1).

Design and procedure. Each trial began with the context
photograph presented alone for 1000 ms. The fixation cross then
appeared, followed after a 400–600 ms delay by the search array.
The search array was then present for 1500 ms or until response
(see Figure 1). Participants were instructed to search the display
for the shape singleton and indicate the orientation of the corre-
sponding line segment by pressing the “Z” key to indicate a
vertical line and the “M” key to indicate a horizontal line as fast as
possible. Incorrect or too-slow responses elicited written feedback
(the words “Incorrect” and “Too slow,” respectively, presented at
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the center of the screen) for 1000 ms before the 1000 ms intertrial
interval (feedback was omitted following correct responses).

The study consisted of 784 trials following a 32-trial practice
phase. A distractor was present on 66% of trials. For each context,
one possible stimulus location was high-probability: the distractor
appeared at this location on 62% of distractor-present trials, or
approximately 8 times as often as the distractor appeared at any
other location in that context (henceforth “low-probability loca-
tions”). The two contexts’ high-probability locations were directly
opposite one another and were counterbalanced between partici-
pants. On low-probability location trials, the distractor appeared at
the remaining five locations equally often. The target location was
unbiased, except insofar as the target never overlapped with the
distractor and was thus less likely to appear at the high-probability
location (7.7% vs. 18.5% for each low-probability distractor loca-
tion on distractor-present trials, unbiased on distractor-absent tri-
als). Participants were given a 30 s break every 100 trials, begin-
ning at Trial 121.

Analysis. Seven participants were excluded for accuracy be-
low 80%. We chose a threshold of 80% a priori to help ensure a
robust estimate of mean RT on correct trials, given the frequency
of low-probability distractor trials and targets appearing at the
high-probability distractor location, although identical statistical
conclusions are reached with a more liberal threshold such as 60%.
Thirty-five participants are included in the following analyses. To
control for intertrial priming effects, when the distractor appeared
in the same location on two (or more) consecutive trials, the repeat
trial was excluded from analysis (given that such repetitions are
more frequent for trials in the high-probability distractor location
condition; see Wang & Theeuwes, 2018a, 2018b, 2018c); this
resulted in the removal of 11.5% of all trials. Incorrect responses

were excluded from response time (RT) analysis, as were RTs
shorter than 200 ms or more than three SDs above the mean of
their condition (this resulted in the removal of �1% of all RTs, the
proportion of which did not differ across experiment conditions:
p � .10). Trials were categorized by distractor location (absent,
low-probability, high-probability in the current trial’s context;
“context-matched”, and high-probability in the other context;
“context-mismatched”) and RTs submitted to a repeated-measures
ANOVA in IBM SPSS 25 (as in Anderson, 2015; Anderson &
Britton, 2019; Cosman & Vecera, 2013). Due to violation of
assumed sphericity, the Greenhouse-Geisser correction was ap-
plied, as ε � 0.75. A secondary analysis examined RT as a
function of the location of the target. Where a null result was
indicated, the Bayes Factor (BF) was computed to estimate the
probability of the null hypothesis, with a BF01 � 3 interpreted as
evidence in its favor (Rouder, Speckman, Sun, Morey, & Iverson,
2009). Across all experiments, there were either no effects in
accuracy beyond a small cost associated with the presence of a
distractor, or there was a small additional cost that mirrored the
differences observed in RT; given this and the focus on RT in prior
studies of location-based distractor suppression (e.g., Wang &
Theeuwes, 2018a, 2018b, 2018c), subsequent analyses focus on
RT.

Results

RT differed significantly between distractor locations, F(1.99,
67.5) � 25.33, p � .001, �p

2 � 0.76 (see Figure 2). Post hoc t tests
with Bonferroni correction indicated no reaction time (RT) differ-
ence between the context-matched and context-mismatched high-
probability distractor locations, t(34) � 0.34, p � .734, BF01 �
5.22. Therefore, we pooled all high-probability distractor trials.
Participants were slower in the low-probability condition than in
the pooled high-probability condition, t(34) � 6.63, p � .001, d �
1.12, in the low-probability condition relative to the no-distractor
condition, t(34) � 10.43, p � .001, d � 1.76, and in the pooled
high-probability condition relative to the no-distractor condition,
t(34) � 6.75, p � .001, d � 1.14.

By virtue of the task design, the target sometimes appeared at a
high-probability distractor location, and location-based suppres-
sion would predict a slowing of target identification responses in

Figure 1. Sequence and time course of events for an example trial in
Experiment 1. The target was defined as a shape singleton and the distrac-
tor as a color singleton. Participants identified the orientation of the line
segment inside the target (vertical or horizontal). Each background scene
was associated with a different high-probability distractor location. The
forest image used in this figure was contributed by a coauthor (Brian A.
Anderson) and differs from the corresponding photograph used in the
experiment, which may be subject to copyright restrictions. See the online
article for the color version of this figure.

Figure 2. Mean RTs for Experiment 1. Error bars reflect within-subjects
confidence intervals (Loftus & Masson, 1994). See the online article for the
color version of this figure.
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this case. Participants were significantly slower to report the target
at both the context-matched (M � 758 ms, SD � 91 ms) and
context-mismatched (M � 762 ms, SD � 99 ms) high-probability
distractor locations compared to the low-probability locations
(M � 732 ms, SD � 81 ms), ts � 3.76, ps � 0.002, ds � 0.63.
RT did not differ between the context-matched and context-
mismatched locations, t(34) � 0.67, p � .509, BF01 � 4.48,
mirroring the pattern evident for distractor processing.

Discussion

Experiment 1 shows that statistically learned distractor suppres-
sion generalizes across contexts, such that high-probability dis-
tractor locations are suppressed regardless of the image against
which they are presented. Our results replicate Wang and Theeu-
wes (2018a, 2018b, 2018c) in that both distractors and targets
appearing in high-probability distractor locations were suppressed
(even when accounting for trials in which the distractor location
was immediately repeated). Notably, context did not impact par-
ticipants’ distractor filtration or target processing despite its sub-
stantial predictive power (the context-matched high-probability
location was eight times more likely to contain the distractor). The
results therefore suggest that statistical learning of high-probability
distractor locations is tied predominantly to the location of the
distractor regardless of the context in which the distractor appears,
at least when the context is incidental to the task. This contrasts
with feature-based associative reward learning (using the same
background scene manipulation: Anderson, 2015; Cosman &
Vecera, 2013) and statistical learning of the color of distractors
appearing at particular high-probability locations (Failing et al.,
2019), which does show evidence of context specificity even when
the contextual information is incidental to the task. Potential im-
plications of this difference are explored in the General Discus-
sion.

It could be questioned whether participants processed contextual
information in Experiment 1 sufficiently to support statistical
learning. For several reasons, we think this objection is unlikely.
First, we used the same scenes, positioning of the search array, and
instructions concerning the role of the scenes as Anderson (2015),
which demonstrated contextually dependent learning (see also
Cosman & Vecera, 2013). The search array was embedded within
the context scenes, requiring that participants look directly at these
scenes to perform the task. Participants would therefore seem to
have had ample opportunity to link contextual information to
features of the search array (including distractor position). Fur-
thermore, many contexts experienced in everyday life influence
expectations without necessarily being salient or explicitly at-
tended. That participants were unable to modulate spatial attention
in a contextually specific manner in our experiment is therefore
theoretically informative, although we cannot rule out the possi-
bility that a more salient or explicit manipulation of task context
could have produced a different pattern of results.

Experiment 2

Also of interest in the present study is the degree to which
statistically learned spatial suppression transfers to the suppression
of the same spatial location in a novel context. While the effects of
some types of selection history, prominently reward learning, are

known to transfer to novel stimuli and tasks (Anderson, Laurent, &
Yantis, 2012; Mine & Saiki, 2015), spatial probability learning has
so far been shown to generalize only to closely related tasks, and
this generalization has been probed only in the context of target
locations (Jiang et al., 2015; Salovich et al., 2018). We sought to
examine whether a high-probability distractor location would be
suppressed in a new task context. To address this question, how-
ever, it is necessary to first establish whether learned suppression
of a distractor location persists more generally over time when the
biased probabilities are no longer in place.

If distractor suppression can be meaningfully said to generalize
between stimuli and tasks, it must be the product of genuine and
persistent learning, rather than cross-trial inhibition, and thus re-
sistant to extinction. Kabata, Matsumoto (2012) and Goschy et al.
(2014) attribute probability cueing substantially, though not exclu-
sively, to intertrial priming effects. While Wang and Theeuwes
(2018a, 2018b, 2018c) exclude from analysis the second of two
consecutive trials with identical distractor positions to control for
intertrial priming effects, Maljkovic and Nakayama (1996) dem-
onstrate that these effects can persist up to five to eight trials after
the eliciting trial. Thus, trimming the second trial is insufficient to
control for priming effects. Jiang et al. (2013) demonstrate that
spatial probability learning of target location can persist up to a
week after initial training, suggesting a longer-lasting effect con-
sistent with genuine learning. Although using a different paradigm
to the one used in the present study, Sauter et al. (2019) suggest
that suppression of a high-probability distractor location may only
persist into extinction when the target and distractor are defined in
the same feature dimension, preventing (feature) dimension-based
suppression.

Experiment 2 addresses the issue of the persistence of spatial
learning in distractor suppression by examining the robustness of
such suppression during an extinction period. Participants
completed an additional singleton training phase with a high-
probability distractor location, then immediately completed an
otherwise identical test phase with no high-probability location.
Participants were not informed that the distractor location proba-
bilities, or any other aspect of the task, had changed during the test
phase. We assessed response speed when the distractor appeared in
the formerly high-probability location. If distractor suppression is
resistant to extinction, responses will continue to be facilitated
when the distractor is in the formerly high-probability location.

Method

Participants. Fifty-four new participants were recruited from
the Texas A&M University community. All participants were
between the ages of 18 and 35, and all reported normal or
corrected-to-normal visual acuity and color vision. After excluding
participants with low accuracy (see Analysis), the final sample size
was 43 (22 female, mean age � 19.5, SD � 2.3). Participants were
compensated with course credit. All procedures were approved by
the Texas A&M University Institutional Review Board and con-
formed to the principles outlined in the Declaration of Helsinki.

Apparatus. The apparatus used were identical to those used in
Experiment 1.

Stimuli. The search display was identical to those presented in
Experiment 1, except that the fixation cross and stimuli were
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superimposed on a uniform black background rather than a pho-
tograph.

Design and Procedure. The experiment consisted of two
phases, preceded by 30 practice trials. During the 444-trial training
phase, one location (counterbalanced between participants) was
designated high-probability, such that the distractor appeared there
on 66% of distractor-present trials (45% of total trials), as in
Experiment 1. On the remaining distractor-present trials the dis-
tractor appeared equally often at the other 5 locations. On 33% of
total trials, no distractor appeared (distractor-absent trials). Target
location was again unbiased.

Each trial began with a central fixation cross for 400–600 ms,
followed by the search display for 1500 ms or until a response was
registered (see Figure 3). Participants were instructed to identify
the line segment inside the shape singleton with a key press using
the same stimulus-to-response mapping as Experiment 1. Incorrect
or too-slow answers elicited written feedback as in Experiment 1.
Participants were given a 30 s break every 111 trials.

After the final break, the 180-trial test phase began immediately.
During this phase, the distractor was equally likely at all six
locations. The distractor appeared on 66% of trials. Participants
were not informed that the task contingencies had been altered, and
the task was otherwise identical to the training phase.

Analysis. Eleven participants were excluded due to accuracy
below 80%, leaving 43 participants for analysis. Data from the
training phase were divided by distractor location (absent, high-
probability, and low-probability) and submitted to a repeated mea-
sures ANOVA in IBM SPSS 25. To control for intertrial priming
effects, when the distractor appeared in the same location on two
(or more) consecutive trials, the repeat trial was excluded from
analysis as in Experiment 1. High-probability distractor trials were
excluded from the analysis comparing RT to targets appearing at
the high- and low-probability distractor locations, as the target
could by definition not appear at the high-probability distractor
location on such trials.

To examine extinction over time, we broke the test phase into
two 90-trial blocks (as distractors appeared at the formerly high-
probability location on only 1/6 of distractor-present trials, further
subdividing trials into smaller epochs would result in too few
observations for this condition to draw meaningful conclusions).
Data were subjected to a two-way repeated measures ANOVA in
IBM SPSS 25, with block and distractor location (absent, previ-

ously high-probability location, previously low-probability loca-
tion) entered as within-subjects variables. Due to violation of the
assumption of sphericity, we applied the Huynh-Feldt correction,
as ε � 0.75. For both the training phase and the test phase,
incorrect responses were excluded from RT analysis, as were RTs
shorter than 200 ms or more than three SDs above the mean of
their condition.

Results

Training phase. We observed a significant effect of distractor
location, F(2, 84) � 98.49, p � .001, �p

2 � 0.84 (Figure 4a). Post
hoc t tests with Bonferroni correction indicated that participants
were significantly faster on no-distractor trials than on low-
probability distractor trials, t(42) � 14.37, p � .001, d � 2.19, on
high-probability distractor trials compared to low-probability tri-
als, t(42) � 6.22, p � .001, d � 0.95, and on high-probability
distractor trials compared to no-distractor trials, t(42) � 7.78, p �
.001, d � 1.19. Participants were slower to identify targets ap-
pearing at the high-probability distractor location (M � 798 ms,
SD � 99 ms) compared to targets at the low-probability distractor
locations (M � 737 ms, SD � 74 ms), t(42) � 8.23, p � .001, d �
1.26.

Test phase. A two-way repeated measures ANOVA showed
no interaction between block and distractor location and no effect
of block (ps � 0.13). There was a significant effect of distractor
location, F(1, 42) � 35.86, p � .001, �p

2 � 0.46 (Figure 4b). Thus
trials were collapsed over both blocks and submitted to post hoc t
tests with Bonferroni correction, which indicated that participants
were faster on distractor-absent trials than on low-probability
distractor trials, t(42) � 10.91, p � .001, d � 1.66, on high-
probability distractor trials compared to low-probability trials,
t(42) � 2.54, p � .015, d � 0.39, and on high-probability distrac-
tor trials compared to no-distractor trials, t(42) � 5.79, p � .001,
d � 0.88. Participants were again slower to identify targets ap-
pearing at the high-probability distractor location (M � 751 ms,
SD � 106 ms) compared to targets at the low-probability distractor
locations (M � 722 ms, SD � 77 ms), t(42) � 3.22, p � .002, d �
0.49; the magnitude of this effect did not differ between blocks (41
ms in block 1 vs. 16 ms in block 2), t(42) � 1.78, p � .083,
although there was a trend in the direction of extinction.

Discussion

Experiment 2 shows that statistically learned distractor suppres-
sion persists even after location probabilities are equalized. We
again replicated the results of Wang and Theeuwes (2018a, 2018b,
2018c), observing a distractor suppression effect across both
phases along with a corresponding location-specific suppression of
target processing. Although we did not observe a significant dif-
ference in the magnitude of distractor suppression between the first
and second halves of the test phase, the magnitude of the learned
bias declined numerically and the difference was marginally sig-
nificant for the effect on target reporting. The fact that distractor
probabilities from the training phase reliably influenced perfor-
mance in the test phase suggests that distractor suppression is the
product of genuine statistical learning rather than a residual con-
sequence of intertrial priming, which would have been expected to
disappear after roughly five to eight trials of unbiased task con-

Figure 3. Sequence and time course of events for Experiment 2. As in
Experiment 1, the target was defined as a shape singleton and the distractor
as a color singleton. Participants identified the orientation of the line
segment inside the target (vertical or horizontal). See the online article for
the color version of this figure.
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tingencies (Maljkovic & Nakayama, 1996). This finding is critical
to Experiment 3, in which we examined the persistence of such
learning outside the originally associated task.

Experiment 3

Having established that suppression of a high-probability dis-
tractor location indeed reflects a genuine learning effect that per-
sists into extinction, we next examined whether this reshaping
would influence attention allocation in a novel task, consistent
with the generalization of learning as previously shown in the case
of value-driven attention (Anderson et al., 2012; Mine & Saiki,
2015). Generalization of spatial inhibition would be consistent
with a persistent biasing signal that is applied at the level of a
spatial priority map without respect to feature-based influences,
serving as an independent source of input. Conversely, a failure to
generalize across stimuli and task would suggest that task context
gates which spatial biases are applied to the priority map and/or
that statistically learned distractor suppression reflects the conflu-
ence of location- and feature-based activation on the priority map
and is therefore limited to particular eliciting stimuli (see Failing et
al., 2019).

To adjudicate between these possibilities, Experiment 3 probed
the effects of previously learned spatial inhibition in a novel task
context using a variant of the modified spatial cueing paradigm of

Folk, Remington, and Johnston (1992). In this paradigm, task-
irrelevant uninformative cues appear briefly before search display
onset; one cue shares stimulus features (typically color) with the
target. Target identification is facilitated when the target appears at
the colored cue’s location, suggesting that attention is automati-
cally directed to stimuli possessing a task-relevant feature. As in
Experiment 2, participants completed an additional singleton train-
ing phase with a high-probability distractor location followed by a
spatial cueing task. If learned distractor suppression generalizes to
stimuli appearing at the same location in a novel task context, we
should observe reduced capture by the colored cue when that cue
appears in the previously suppressed location.

Method

Participants. Forty-four new participants were recruited from
the Texas A&M University community. All participants were
between the ages of 18 and 35, and all reported normal or
corrected-to-normal visual acuity and color vision. After excluding
participants with low accuracy (see Analysis), the final sample size
was 33 (20 female, mean age � 19.6, SD � 2.4). Participants were
compensated with course credit. All procedures were approved by
the Texas A&M University Institutional Review Board and con-
formed to the principles outlined in the Declaration of Helsinki.

Apparatus. The apparatus used were identical to those used in
Experiments 1 and 2.

Stimuli. Stimuli in the first phase of the experiment were
identical to the stimuli in Experiment 2, save for white boxes
surrounding all six stimuli. These boxes were approximately 3.3°
in height and width. These boxes remained onscreen throughout
each trial.

In the second phase of the experiment, six white boxes were
drawn in the same positions used during training. During the cue
display, four dots appeared, one per side, surrounding each box.
One set of dots (the cue) was red; the others were white. During the
target display, either an “X” or a “�” appeared in each box (50%
probability). The “X” was approximately 2 � 2° in height and
width, while the “�” was approximately 1.6° in length and 1.2° in
height. One character (the target) was red; the others were white.
Stimuli were not matched for luminance. The cue and target color
matched one of the stimulus colors from the training task, poten-
tially facilitating the transfer of learning. As the goal of the
experiment was to examine the influence of prior learning on
distractor suppression, rather than determine the degree to which
distractor processing is contingent on task goals, we only presented
a target-colored distractor that both goal-contingent (Folk et al.,
1992) and stimulus-driven (Theeuwes, 1992) theories predict
should capture attention in order to maximize our ability to detect
modulations in attentional capture by stimulus location.

Design and procedure. The experiment consisted of two
phases. The first phase was identical to the first phase of Experi-
ment 2, except that all possible stimulus locations were marked by
white boxes (Figure 5a). During the second phase, after 16 practice
trials, participants completed 288 trials of a spatial cueing task
(similar to Folk et al., 1992). Target and cue locations were
counterbalanced within participants and fully uncorrelated, such
that cue location predicted target location (i.e., the cue was valid)
on only one sixth of trials. That is, cue location provided no
information about target location.

Figure 4. Mean RTs for Experiment 2. (a) Training phase. (b) Test phase.
Error bars reflect within-subjects confidence intervals (Loftus & Masson,
1994). See the online article for the color version of this figure.
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Each trial began with a 500 ms fixation display, followed by the
100 ms disappearance of the fixation cross and its 1000–1400 ms
reappearance. The cues were then flashed onscreen for 50 ms.
After 100 ms, the target display was shown for 50 ms. The fixation
display then remained onscreen for 1500 ms or until participants
made a forced-choice response by pressing one of two keys cor-
responding to the identity of the target (the “Z” key for an “X”
target and the “M” key for an “�” target; see Figure 5b). Incorrect
or too-slow responses elicited written feedback.

Analysis. Eleven participants were excluded from analysis for
accuracy below 80%, leaving 33 participants. Training data were
analyzed as in Experiment 1. RTs from the test phase were entered
into a two-way repeated measures ANOVA with cue location
(formerly high-probability and formerly low-probability) and cue
validity as within-subjects factors. Once again, incorrect responses
were excluded from RT analysis, as were RTs shorter than 200 ms
or more than three SDs above the mean of their condition.

Results

Train phase. A one-way repeated measures ANOVA indi-
cated a significant effect of distractor location, F(2, 64) � 26.33,
p � .001, �p

2 � 0.45. Follow-up post hoc t tests with Bonferroni
correction revealed that, as in Experiments 1 and 2, RTs were
faster on distractor-absent trials than on low-probability distractor
trials, t(32) � 7.26, p � .001, d � 1.26, faster on high-probability
than on low-probability trials, t(32) � 3.14, p � .01, d � 0.55, and
faster on distractor-absent trials than on high-probability trials,
t(32) � 4.17, p � .001, d � 0.73 (Figure 6a). Concerning the
location of the target, participants were slower to identify targets
appearing at the high-probability distractor location (M � 823 ms,
SD � 126 ms) compared to the low-probability distractor locations

(M � 768 ms, SD � 87 ms), t(32) � 4.52, p � .001, d � 0.79,
mirroring the results of prior experiments.

Test phase. A two-way repeated measures ANOVA revealed
a significant main effect of validity, F(1, 32) � 30.73, p � .001,
�p

2 � 0.490, indicating attentional capture by the color cue. No
main effect of cue location was observed, F(1, 32) � 0.20, p �
.659, nor was any interaction between validity and location evi-
dent, F(1, 32) � 0.16, p � .695 (Figure 6b). A Bayesian ANOVA
implemented in JASP (Version 0.9.0.1) indicated that a model
containing a location factor and an interaction term was unlikely
compared to a null model containing only validity (along with
subject) as a factor, BFM � 0.09. No reliable difference was
observed between RT to targets appearing in the formerly high-
probability distractor location (M � 602 ms, SD � 82 ms) com-
pared to targets in the formerly low-probability distractor locations
(M � 601 ms, SD � 75 ms), t(32) � 0.27, p � .789, BF01 � 5.19.
Neither the interaction between validity and location (F � 1) nor
the effect of location on target RTs (p � .88) were significant
when restricting analyses to the first half of the test phase, sug-
gesting that the previously reported statistics did not obscure a
robust but rapidly extinguishing location bias.

Discussion

Experiment 3 indicates overall that statistically learned distrac-
tor suppression does not generalize between the additional single-
ton and spatial cueing paradigms. We observed a robust cuing

Figure 5. Sequence and time course of events for Experiment 3. The
training phase was identical to Experiment 2 (see Figure 3) save for the
addition of white boxes around each possible distractor location. In the test
phase, white and red (dark gray) circles were flashed for 50 ms before
target presentation. The target was defined as the red (dark gray) character
and the cue as the red (dark gray) circles. Target and cue presentation were
fully uncorrelated. See the online article for the color version of this figure.

Figure 6. Mean RTs for Experiment 3. (a) Training phase. (b) Test phase.
Error bars reflect within-subjects confidence intervals (Loftus & Masson,
1994). See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

330 BRITTON AND ANDERSON



effect in which response times were significantly faster when the
cue predicted the location of the target sharing a stimulus feature.
This cuing effect was not impacted by the prior learning from the
training phase, nor was the speed with which targets were identi-
fied. The results suggest that spatial statistical learning does not
transfer to novel stimuli in the same spatial locations, and by
extension that the resulting spatial bias may be restricted to the
task context in which it was learned. Although it could be argued
that the absence of a reduced cuing effect at the formerly high-
probability distractor location provides a strong test of relatively
far transfer or that the strength of attentional capture by the cue
overpowered any lingering location-specific suppression, no effect
on target identification was observed when targets appeared in the
previously high-probability distractor location, suggesting no ev-
idence for even modest generalization. Although it is an empirical
question whether more subtle changes in task context between
training and test would have permitted transfer of a learned spatial
bias, it is apparent from the present study that a purely spatial bias
abstracted from the context in which it is learned is untenable.

General Discussion

Statistical learning is believed to impact target selection and
distractor filtration by up- and downregulating representation in-
tensity in the spatial priority map (Ferrante et al., 2018; Jiang,
2018; Wang & Theeuwes, 2018a, 2018b, 2018c). However, little is
currently known about the linkage of nonspatial information to
spatial locations during statistical learning and the degree to which
such nonspatial information modulates the learning and expression
of location-based spatial suppression. The present study examined
the formation of context-spatial associations during statistical
learning and the degree to which statistically learned distractor
suppression persists and generalizes across tasks, with the greater
aim of investigating potential commonalities with statistically
learned target selection and with other types of selection history.

Statistically learned suppression is predominantly tied to the
stimulus’s location in space and secondarily modulated by asso-
ciated stimulus features. The color of stimuli is incorporated into
priority weighting alongside learning from spatial regularities
(Stilwell, Bahle, & Vecera, 2019). Failing et al. (2019) demon-
strated that suppression can occur at multiple high-probability
locations, as in Experiment 1 of the present study. However, when
one color distractor appears more frequently at one high-
probability location and a different color distractor at another
high-probability location, distractor suppression at these two high-
probability locations is further modulated by the color of the
distractor (Failing et al., 2019). To this characterization, our Ex-
periment 1 adds evidence that contextual information is not like-
wise bound to stimulus location during statistical learning, al-
though it was similarly incidental to the performance of the task.
That is, where color-location mismatches attenuate the suppression
effect, context-location mismatches do not.

Of note in Experiment 1, contextual information was strategi-
cally useful as a predictor of distractor location. Moreover, in other
paradigms, participants do appear able to integrate similarly inci-
dental contextual information into their spatial representations
during statistical learning, speeding target detection. Naturalistic
background scenes appear to bind to stimulus locations in contex-
tual cuing paradigms (Brockmole, Castelhano, & Henderson,

2006; Brooks et al., 2010), in which part or all of the search display
is repeated on some trials: Target selection is speeded for repeated
search arrays only when the global context matches the array.
Thus, it is unclear why participants in Experiment 1 were unable
to integrate contextual information. Several explanations for this
disconnect are conceivable. Distractor suppression, compared to
target selection, may tap separate mechanisms of spatial bias less
reliant on guidance from global contextual representations. Alter-
nately, the nature of the search arrays in Experiment 1, in which
distractor position varies across trials and must be statistically
integrated over trials, may reflect relationships that are more
difficult to associate with context. This latter interpretation would
be consistent with the observation by Brooks et al. (2010) that
minor changes to the search array prevented array-context associ-
ations and with prior studies linking context to subsequent atten-
tional capture when context was a perfect trial-by-trial predictor of
the associated task contingency (Anderson, 2015; Cosman &
Vecera, 2013).

Contextual information is known to bias some types of predom-
inantly feature-based visual search (Anderson, 2015; Cosman &
Vecera, 2013). We have previously shown that contextual infor-
mation is acquired during reward learning, such that reward-
associated colors do not capture attention outside of the context in
which they predict reward even though participants are unaware of
the contextual contingencies (Anderson, 2015). Participants can
also learn to engage different search strategies in different contexts
based on context-specific target-nontarget relations (Cosman &
Vecera, 2013). Conversely, when the same context manipulation
predicts the color of the target, former target colors gain attentional
priority regardless of the context in which they appeared (Ander-
son & Britton, 2019); this pattern parallels the results evident in the
present study, potentially reflecting a distinction between associa-
tive learning and selection history-driven learning whereby con-
textual information gates the prediction errors that shape atten-
tional priority only in reward-based associative learning (Sali,
Anderson, & Yantis, 2014).

In Experiment 2, we show that statistically learned location
suppression persists well after location probabilities are equalized.
In combination with evidence that target-centered probability
learning persists after several hundred trials (Jiang et al., 2013) and
that estimated intertrial repetition priming is insufficient to account
for speeded processing in high-probability locations (Jiang, Sha, &
Remington, 2015), our findings in Experiment 2 are inconsistent
with the intertrial priming account of probability cueing. Rather,
selection history tied to distractors shapes the attentional priority
map in an enduring way.

Though maintained for later use, statistically learned priority
representations appear not to be accessed outside the original task
in which they were acquired. In Experiment 3 we observed no
learning transfer from the additional singleton paradigm to the
spatial cueing paradigm: The high-probability distractor locations
from the first task were not suppressed in the second, although the
spatial aspects of the first task’s search display were retained. This
finding is consistent with prior reports that statistically learned
target prioritization can be limited in its generalization to a differ-
ent task, particularly when the task demands of search change
(Jiang et al., 2015).

Failing et al. (2019) and Wang, van Driel, Ort, and Theeuwes
(2019) construct a two-stage model of spatial suppression, in
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which a location in the priority map is preemptively suppressed
prior to search display onset; this suppression is then modulated by
a feature-specific response to the presence or absence of a distrac-
tor. Had the hypothesized preemptive, purely spatial suppression
been entirely independent of information about stimulus features,
we might have expected suppression at the previously high prob-
ability location regardless of the visual search task performed.
Instead we observed no suppression effect at all when the visual
search task changed from singleton search to feature-based orient-
ing in Experiment 3. This finding is consistent with evidence that
spatial attentional biases favoring high-probability target locations
in one task do not extend to stimulus processing in a different task
when the two tasks are randomly intermixed, suggesting task and
stimulus specificity (Addleman, Schmidt, Remington, & Jiang,
2019; see also Addleman, Tao, Remington, & Jiang, 2018). Thus,
any purely spatial suppression must be reliant on features of the
originally learned stimulus context, at least in its ability to instan-
tiate an overall set of context-specific spatial priority weights.
Similarly, distractor suppression may be tied to a specific atten-
tional strategy for localizing the target, which varied between a
shape singleton and a color-defined target in Experiment 3. An
alternative possibility would be that statistically learned suppres-
sion is at least partially contingent on a combination of feature and
spatial inputs, with novel stimuli matching the trained input insuf-
ficiently to activate suppressive mechanisms. Perhaps related to
these latter two possibilities, Sauter et al. (2019) demonstrate,
using a different task that promotes feature-based attentional guid-
ance, that frequent distractor locations are persistently inhibited
only when the distractor is defined in the same feature dimension
as the target. From these data it cannot be determined whether
preemptive suppression occurs but is immediately overwritten by
the processing of an untrained stimulus or whether the associated
spatial priority representations are never activated at all in the
novel task. To differentiate these possibilities, pretrial electrophys-
iological recordings could be informative (see Wang et al., 2019).

The location-based suppression observed in the present study
can be contrasted with feature-based suppression of physically
salient color singletons (e.g., Gaspar & McDonald, 2014; Gaspelin
& Luck, 2018a, 2018b; Gaspelin, Leonard, & Luck, 2015, 2017;
Sawaki & Luck, 2010; Vatterott & Vecera, 2012). Under certain
task conditions, while searching for a specific feature-defined
target (i.e., feature search mode), processing of color singleton
distractors can be substantially reduced, even below that of other
nontarget stimuli (e.g., Gaspelin & Luck, 2018a; Gaspelin et al.,
2015, 2017). The extent to which such suppression differs mech-
anistically from the suppression observed in the present study is
unclear, although given that feature-based suppression is contin-
gent upon goal-state (feature search mode) and the color singleton
distractor is always task-irrelevant, feature-based suppression is
often characterized as an explicitly top-down control mechanism
(e.g., Gaspelin & Luck, 2018b; Gaspelin et al., 2015; Sawaki &
Luck, 2010) whereas implicit statistical learning may underlie the
observed location-based suppression (Wang & Theeuwes, 2018a,
2018b, 2018c). Both in the present study and in prior demonstra-
tions of the phenomenon (e.g., Wang & Theeuwes, 2018a, 2018b,
2018c), attentional capture was reduced but not completely pre-
vented at the high-probability distractor location; such incomplete
suppression may be a product of the fact that targets could still

appear at this location on some trials, requiring that some attention
be directed to it in order to perform the task accurately.

Awareness of the high-probability distractor location was not
measured in the present study (see also, Wang & Theeuwes,
2018a, 2018c). However, evidence from multiple investigations of
the phenomenon suggest that the learned suppression is implicit
and robust in individuals who report no awareness of the contin-
gencies (Failing et al. 2019; Wang et al., 2019; Wang & Theeuwes,
2018b). A similar lack of explicit awareness of task contingencies
was demonstrated in the context-dependent modulation of value-
driven attention (Anderson, 2015) and search mode (Cosman &
Vecera, 2013), making it unlikely that differences in awareness of
the underlying task contingencies would explain the difference
between the findings of those two prior studies and the present
study. However, this possibility cannot be explicitly ruled with our
data. Whether participants become explicitly aware of the
distractor-location contingencies or not, our data show that partic-
ipants fail to learn trial-by-trial context contingencies during train-
ing. Our data additionally indicate that the influence of biased
location probabilities persists well after contingencies are equal-
ized (and so reflects genuine learning rather than more remote
effects of repetition priming), but this persistence is no longer
evident when the stimuli and task are changed.

Statistical learning has recently been described using two com-
peting models of selection history. Theeuwes (2018, 2019) con-
tends that top-down goals, bottom-up physical salience, and selec-
tion history collectively weight a common spatial priority map (see
also Awh, Belopolsky, & Theeuwes, 2012), and that statistical
learning is rapid and flexible. Conversely, Jiang (2018) character-
izes statistical learning as habitual and relatively inflexible—
hence its persistence into similar tasks—and slow to readjust,
distinct from goal-driven attention; in this framework, selection
history and top-down goal-driven attention do not necessarily
reflect parallel and potentially competing input into a common
priority map, and statistical learning is dependent upon the former.
We have previously noted that selection history is not a unitary
construct and that its constituent learning experiences may tap
quite different attentional mechanisms (Anderson, Chiu, DiBar-
tolo, & Leal, 2017; Kim & Anderson, 2019a, 2019b). For instance,
attentional bias arising from reward history (value-driven atten-
tion) is context-sensitive (Anderson, 2015), whereas as noted
above, attentional bias arising from history as a frequent target of
visual search is not (Anderson & Britton, 2019). Additionally,
value-driven attentional biases transfer between unrelated tasks
(Anderson et al., 2012). Experiments 1 and 3 in the present study
therefore suggest that statistical spatial learning is more analogous
to the role of frequent target features in selection history, which we
characterize as a habit-like effect contingent on the repetition of
past orienting behavior and driven primarily by reinforcement
learning mechanisms (Anderson et al., 2017; Kim & Anderson,
2019a, 2019b). In contrast, the influence of learned value on
feature-based attention is explicitly associative (e.g., Bucker &
Theeuwes, 2017; Kim & Anderson, 2019a; Le Pelley, Pearson,
Griffiths, & Beesley, 2015) and may therefore more readily incor-
porate contextual information.

In sum, statistically learned distractor suppression is persistent,
generalizes across contexts experienced during learning, and is
limited in its transference to different visual search tasks. In these
ways, statistically learned distractor suppression differs from
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value-driven attention, which is learned in a context-specific man-
ner (Anderson, 2015) and generalizes to novel visual tasks (An-
derson et al., 2012), suggesting different learning systems in con-
trast to a unitary model of selection history (Awh et al., 2012;
Theeuwes, 2018, 2019). Our findings raise further questions about
the degree to which distractor suppression generalizes between
more closely related tasks, the possible preemptive suppression of
high-probability distractor locations absent features of the original
stimuli, and the degree to which statistically learned priority is
maintained free from retroactive interference by subsequent tasks.

References

Addleman, D. A., Schmidt, A. L., Remington, R. W., & Jiang, Y. V.
(2019). Implicit location probability learning does not induce baseline
shifts of visuospatial attention. Psychonomic Bulletin & Review, 26,
552–558. http://dx.doi.org/10.3758/s13423-019-01588-8

Addleman, D. A., Tao, J., Remington, R. W., & Jiang, Y. V. (2018).
Explicit goal-driven attention, unlike implicitly learned attention,
spreads to secondary tasks. Journal of Experimental Psychology: Human
Perception and Performance, 44, 356–366. http://dx.doi.org/10.1037/
xhp0000457

Anderson, B. A. (2015). Value-driven attentional priority is context spe-
cific. Psychonomic Bulletin & Review, 22, 750–756. http://dx.doi.org/
10.3758/s13423-014-0724-0

Anderson, B. A., & Britton, M. K. (2019). Selection history in context:
Evidence for the role of reinforcement learning in biasing attention.
Attention, Perception, & Psychophysics. Advance online publication.
http://dx.doi.org/10.3758/s13414-019-01817-1

Anderson, B. A., Chiu, M., DiBartolo, M. M., & Leal, S. L. (2017). On the
distinction between value-driven attention and selection history: Evi-
dence from individuals with depressive symptoms. Psychonomic Bulle-
tin & Review, 24, 1636–1642. http://dx.doi.org/10.3758/s13423-017-
1240-9

Anderson, B. A., & Kim, H. (2018a). Mechanisms of value-learning in the
guidance of spatial attention. Cognition, 178, 26–36. http://dx.doi.org/
10.1016/j.cognition.2018.05.005

Anderson, B. A., & Kim, H. (2018b). On the representational nature of
value-driven spatial attentional biases. Journal of Neurophysiology, 120,
2654–2658. http://dx.doi.org/10.1152/jn.00489.2018

Anderson, B. A., Laurent, P. A., & Yantis, S. (2012). Generalization of
value-based attentional priority. Visual Cognition, 20, 647–658. http://
dx.doi.org/10.1080/13506285.2012.679711

Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus
bottom-up attentional control: A failed theoretical dichotomy. Trends in
Cognitive Sciences, 16, 437–443. http://dx.doi.org/10.1016/j.tics.2012
.06.010

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10,
433–436. http://dx.doi.org/10.1163/156856897X00357

Brockmole, J. R., Castelhano, M. S., & Henderson, J. M. (2006). Contex-
tual cueing in naturalistic scenes: Global and local contexts. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 32, 699–
706. http://dx.doi.org/10.1037/0278-7393.32.4.699

Brooks, D. I., Rasmussen, I. P., & Hollingworth, A. (2010). The nesting of
search contexts within natural scenes: Evidence from contextual cuing.
Journal of Experimental Psychology: Human Perception and Perfor-
mance, 36, 1406–1418. http://dx.doi.org/10.1037/a0019257

Bucker, B., & Theeuwes, J. (2017). Pavlovian reward learning underlies
value driven attentional capture. Attention, Perception, & Psychophys-
ics, 79, 415–428. http://dx.doi.org/10.3758/s13414-016-1241-1
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