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A B S T R A C T

The role of associative reward learning in the guidance of feature-based attention is well established. The extent
to which reward learning can modulate spatial attention has been much more controversial. At least one de-
monstration of a persistent spatial attention bias following space-based associative reward learning has been
reported. At the same time, multiple other experiments have been published failing to demonstrate enduring
attentional biases towards locations at which a target, if found, yields high reward. This is in spite of evidence
that participants use reward structures to inform their decisions where to search, leading some to suggest that,
unlike feature-based attention, spatial attention may be impervious to the influence of learning from reward
structures. Here, we demonstrate a robust bias towards regions of a scene that participants were previously
rewarded for selecting. This spatial bias relies on representations that are anchored to the configuration of
objects within a scene. The observed bias appears to be driven specifically by reinforcement learning, and can be
observed with equal strength following non-reward corrective feedback. The time course of the bias is consistent
with a transient shift of attention, rather than a strategic search pattern, and is evident in eye movement patterns
during free viewing. Taken together, our findings reconcile previously conflicting reports and offer an integrative
account of how learning from feedback shapes the spatial attention system.

1. Introduction

The role of an observer's goals (top-down factors) and the physical
salience of objects (bottom-up factors) in the control of attention have
been well established and serve as the foundation for prominent models
of selective attention (e.g., Corbetta & Shulman, 2002; Desimone &
Duncan, 1995; Theeuwes, 2010; Wolfe, Cave, & Franzel, 1989). More
recently, it has been argued that this dichotomy cannot explain the role
of selection history in the control of attention, which appears to be both
non-strategic and independent of the physical salience of stimuli (Awh,
Belopolsky, & Theeuwes, 2012). In this context, an important compo-
nent of selection history has been argued to reflect associative reward
learning, with objects previously associated with reward automatically
capturing visual attention (Anderson, 2013).

The role of associative reward learning in the control of attention
was initially demonstrated using stimuli defined by shape, with results
showing that stimulus competition was biased for or against different
shapes based on whether observers were rewarded for selecting or ig-
noring them, respectively (Della Libera & Chelazzi, 2009). This bias
carried over into extinction, suggesting that it was non-strategic.
Powerful evidence for the unique role of associative reward learning in
the control of attention was provided by a study in which task-irrele-
vant distractors were rendered in a color that had been predictive of

reward during a prior training phase. These distractors were not phy-
sically salient (less so than the target), and the color of stimuli was
known by participants to be completely irrelevant to the task. Never-
theless, attention was automatically captured by the previously reward-
associated colors, suggesting a distinct mechanism of attentional con-
trol that has been referred to as value-driven attention (Anderson,
Laurent, & Yantis, 2011).

Many subsequent studies have adopted this approach of associating
stimulus features (often color) with reward and then presenting the
previously reward-associated features as distractors, replicating and
extending the phenomenon of value-driven attention (e.g., Anderson,
2016a, 2016c; Anderson, Folk, Garrison, & Rogers, 2016; Anderson,
Laurent, & Yantis, 2012; Anderson & Yantis, 2012, 2013; Anderson,
Kuwabara, et al., 2016; Failing & Theeuwes, 2014; Le Pelley, Pearson,
Griffiths, & Beesley, 2015; Mine & Saiki, 2015; Moher, Anderson, &
Song, 2015; Pool, Brosch, Delplanque, & Sander, 2014; see Anderson,
2016b, for a recent review). Attention has been successfully trained to
favor a variety of stimulus features, ranging from specific colors (e.g.,
Anderson et al., 2011) and orientations (Laurent, Hall, Anderson, &
Yantis, 2015; Lee & Shomstein, 2014) to shapes (Della Libera &
Chelazzi, 2009) and even object categories (Hickey & Peelen, 2015). In
addition to feature-based attention, object-based attention also appears
to be strongly modulated by associative reward learning (Lee &
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Shomstein, 2013; Shomstein & Johnson, 2013).
Few studies have probed the influence of associative reward

learning on the control of space-based attention, where reward is not
predicted by a particular stimulus feature but rather by where in space
attention needs to be directed in order to receive high reward. Value-
driven attentional biases for a stimulus feature can be modulated by
spatial information, such that the bias is specific to when that feature
appears in a region of space in which it was rewarded (Anderson,
2015a). More purely space-based attentional biases have also been
shown to be modulated by reward. When a high reward is received for
identifying a target appearing in a given location, this location is
prioritized on the subsequent trial (Hickey, Chelazzi, & Theeuwes,
2014), extending earlier evidence for reward-mediated priming of sti-
mulus color (Hickey, Chelazzi, & Theeuwes, 2010). A more enduring
bias towards a previously rewarded location was demonstrated fol-
lowing a multi-day training protocol in which participants performed a
difficult visual search for alphanumeric among nonalphanumeric
characters. Which of eight possible stimulus positions a searched-for
character appeared in predicted the amount of money earned for re-
porting that target on a given trial. During extinction, participants were
more likely to report a target appearing in a previously high-value lo-
cation, specifically when two targets were simultaneously presented
that competed for attention (Chelazzi et al., 2014).

At least two cases have been reported in which a spatial reward
manipulation failed to produce any evidence for an enduring atten-
tional bias, or even an attentional bias during the period in which the
reward structure was currently in place. In each study, multiple ex-
periments were conducted in which participants searched for a “T”
among offset “L” distractors (Jiang, Li, & Remington, 2015; Won &
Leber, 2016). When the target appeared anywhere within a particular
quadrant of the screen, it was much more likely to yield a high reward if
correctly identified. Under a variety of conditions, including conditions
of time pressure in which participants should be highly motivated to
preferentially search the high-value quadrant in order to maximize
rewards, no measurable spatial attention bias was observed (Jiang
et al., 2015; Won & Leber, 2016). Furthermore, under similar condi-
tions in which participants were asked to instead choose a particular
stimulus rather than perform visual search, robust spatial preferences
for highly rewarded locations were observed. These results suggest that
spatial reward can readily influence choice behavior (Won & Leber,
2016), but seemingly not the allocation of attention during visual
search (Jiang et al., 2015; Won & Leber, 2016).

It is important to note that space-based attentional biases are ro-
bustly influenced by a different source of selection history using the
same experimental paradigm that failed to show value-driven biases.
Specifically, participants are much faster to report targets in locations
that more frequently contained targets in prior trials, even well after
such biased probabilities are no longer in place (e.g., Jiang & Swallow,
2013; Jiang, Swallow, Rosenbaum, & Herzig, 2013; Jiang et al., 2015;
Won & Leber, 2016). Similarly, targets can be found more quickly when
the position of the target is consistently predicted by the spatial con-
figuration of non-targets (e.g., Chun & Jiang, 1998, 2003), a phenom-
enon termed contextual cueing. That a different form of selection history
can so robustly bias spatial attention in this paradigm argues against a
general insensitivity of the paradigm to the ability to detect a learned
spatial attention bias.

These repeated failures to observe reliable effects of reward history
on the allocation of spatial attention during visual search have naturally
led to skepticism concerning whether principles of value-driven atten-
tion extend to the spatial domain (Jiang et al., 2015; Won & Leber,
2016). Indeed, it has been suggested that evolutionary pressures im-
posed by naturally occurring reward structures might strongly favor
feature-reward pairings over space-reward pairings, rendering influ-
ences of the reward system on spatial attention phylogenetically im-
plausible (Won & Leber, 2016). We would argue that this is a fair point,
in the context of how space is defined in these studies.

In traditional visual search paradigms, including those used by
Jiang et al. (2015) and Won and Leber (2016), space is defined in a
highly abstract manner: a region of a blank computer screen. In fact,
there is no clear anchor point for defining where one region would end
and another begin, apart from the borders imposed by the edges of the
monitor. Such a highly abstract notion of space is unlikely to engage the
spatial representations one might use to guide search for a valued item
based on learning history, such as where ice cream tends to be stored in
the freezer. In this case, the valued location is defined in the context of
the spatial arrangement of objects in the scene (e.g., the position of the
freezer relative to other objects in the room, and which section of which
shelf when looking inside the freezer). The spatial information provided
by real-world scenes can serve as the basis for contextual cueing of
target position (e.g., Brockmole & Henderson, 2006a, 2006b), sug-
gesting a rich source of spatial guidance, although contextual cueing is
also evident with the more abstract stimulus displays that have failed to
produce evidence of value-based attentional biases (Jiang et al., 2015;
Won & Leber, 2016).

Perhaps information pertaining to the spatial layout and arrange-
ment of objects in a scene is useful for guiding spatial attention on the
basis of reward history, which might help explain the apparent dis-
crepancy between Chelazzi et al. (2014) on the one hand, and Jiang
et al. (2015) and Won and Leber (2016) on the other hand. Chelazzi
et al. (2014) only found an effect of reward when two targets si-
multaneously competed for attention, where reward was not only tied
to the absolute spatial location of the targets but also to their relative
positions. With the aim of reconciling these conflicting reports, in the
present study, we examined the role of value learning in the context of
real-world scenes, both scenes containing a rich array of objects with a
consistent spatial arrangement and scenes containing no objects (tex-
tures).

2. Experiment 1

In Experiment 1, participants were first trained to associate a spe-
cific region of multiple different scenes with monetary reward. On each
trial, one of eight scenes remained on the screen until participants
clicked on a pixel within the scene using the mouse cursor. Participants
were instructed that they would be rewarded for each click, and that
the amount of reward received depended on where they clicked.
Unbeknownst to the participant, for each of the eight scenes, clicking in
one quadrant would always yield more reward than clicking in any
other quadrant, and clicking in the center of that quadrant was asso-
ciated with the best possible payout. Each quadrant served as the high-
value quadrant equally-often across scenes, requiring that participants'
memory for high-value locations be context-specific, rather than reflect
a global bias towards one particular region of the computer screen. In
the feature domain, value-driven attentional capture can exhibit con-
textual specificity (Anderson, 2015b). In the present study, the scene
context manipulation demanded that participants take into account the
unique spatial layout of each scene.

In a subsequent test phase, participants performed visual search for
a side-ways “T” among three upright or upside down “T” distractors,
with one search item appearing in the center of each quadrant on the
screen. The previously presented scenes were used as the background
and were irrelevant to the task, and participants were informed that
they could neither earn nor lose money in this task. To the degree that
spatial attention is automatically oriented towards previously high-
value locations within a scene, participants should be significantly
faster to report the target when it appears within a previously high-
value location, which would be reflected in a robust validity effect.

2.1. Methods

2.1.1. Participants
Thirty-six participants were recruited from the Texas A&M
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University community. Participants were compensated with money
earned in the experimental task. All reported normal or corrected-to-
normal visual acuity and normal color vision. Data from one participant
was replaced due to chance-level performance in the test phase (accu-
racy=51%). All procedures were approved by the Texas A&M
University Institutional Review Board and conformed with the princi-
ples outlined in the Declaration of Helsinki.

2.1.2. Apparatus
A Dell OptiPlex equipped with Matlab software and Psychophysics

Toolbox extensions (Brainard, 1997) was used to present the stimuli on
a Dell P2717H monitor. The participants viewed the monitor from a
distance of approximately 70 cm in a dimly lit room. Manual responses
were entered using a standard keyboard.

2.1.3. Training phase
Each trial began with the presentation of a scene image that filled

the entire computer screen (see Fig. 1A). The scene image remained on
screen until participants clicked on the scene using the mouse cursor.
500ms after a click was registered, feedback was presented at the
center of the screen within a black box for 1500ms. The feedback in-
dicated the money earned for the preceding click, along with the cur-
rent bank total. The feedback then disappeared while the scene re-
mained on screen for an additional 1000ms, which was followed by a
blank 500ms inter-trial-interval (ITI).

Participants were informed that they would earn money each time
they clicked on a scene, and that how much they earned for each click
would depend on where they clicked. Participants were encouraged to
maximize their earnings by clicking on good locations, but were not
provided any explicit information about where those good locations
were.

Eight difference scenes were presented, 40 times each for a total of
320 trials. The scenes used were taken from the CB Database (Sareen,
Ehinger, & Wolfe, 2016). For each scene, one quadrant was designated
as the high-value quadrant. Any click within the high-value quadrant
yielded at least a 4¢ reward. If participants clicked within an imaginary
2.7°× 2.7° box centered within the high-value quadrant, 7¢ was
earned. Any click within one of the other three (low-value) quadrants
yielded a 1¢ reward.

Participants were assigned to one of four training conditions in
counterbalanced fashion, with each quadrant of each scene serving as
the high-value quadrant in one of the four conditions. Therefore, across
participants, each quadrant served as the high-value quadrant equally-
often. The order in which the scenes were presented to each participant
was randomized.

2.1.4. Test phase
Each trial began with the presentation of one of the scenes from

training for 1000ms, followed by the presentation of a “T” stimulus
within a 2.1°× 2.1° black box centered within each of the four quad-
rants (see Fig. 1B). One “T” was tilted either 90° to the left or right and
served as the target, while the other three “T”s were either upright or
upside down (randomly determined with the constraint that all three
non-target “T”s could not be oriented in the same direction). The “T”
display remained on screen until a response was registered or 2500ms
had elapsed, after which the trial timed out. If participants responded
incorrectly, the word “Incorrect” was presented against the center of
the screen for 1000ms following a blank 500ms interval, whereas if a
response was not registered within the 2500ms response window, the
feedback instead read “Too slow.” Feedback was omitted following
correct responses. Each trial ended with a blank 500ms ITI.

The test phase consisted of 320 trials, with a 30 sec break occurring
after each epoch of 80 trials. Each scene was presented 40 times, with
the target appearing in each quadrant of each scene equally-often. The
target was tilted 90° to the left and right equally-often for each scene.
Trials were presented in a random order.

If the bottom of the target pointed to the right, participants were
instructed to press the “m” key, and if the bottom of the target pointed
to the left, participants were instructed to press the “z” key. The task
began with 10 practice trials that used different scenes than those that
were experienced during training. Participants were instructed to re-
spond both fast and accurately, and were informed that money could
not be neither gained nor lost in this part of the experiment. Upon
completion of the experiment, participants were paid their cumulative
earnings from training.

2.1.5. Data analysis
In the training phase, the reward earned on each trial was cate-

gorized in terms of how many times the scene on that trial had been
presented. This yielded earnings over 40 different scene presentations,
with eight different scenes contributing to each value. In the test phase,
response time (RT) was recorded from the onset of the four items
comprising the search array, and RTs exceeding 3 SD of the mean of
their respective condition or faster than 200ms were trimmed.

2.2. Results and discussion

2.2.1. Training phase
The amount earned differed across scene presentation, F(39,1365)

= 56.82, p < 0.001, η2p = 0.619 (Fig. 2), with performance beginning
at chance and plateauing around the 33rd time each scene was

Incorrect

2500 ms or
until response

1000 ms

500 ms

500 ms

1000 ms

1500 ms

Until 500 ms 
after response

1000 ms

500 ms

+ 4¢
$1.04 total

BA

Fig. 1. Time course of trial events during the training phase and test phase of Experiment 1. (A) Training phase. Participants clicked on a pixel each time a scene was
presented, and were rewarded for the click contingent upon which quadrant of the picture they had clicked on. In this example, the upper-left quadrant is the high-
value quadrant, and clicking within the center box in that quadrant yielded the highest possible reward. The dotted lines were not visible to participants and are
provided for illustrative purposes. (B) Test phase. Participants searched for a side-ways “T” among upright and upside down “T” distractors. Scenes previously
experienced during the training phase were used as the background and were irrelevant to the task. Note that the stimuli are not drawn to scale in the figure.
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presented. The learning curve was well accounted for by a linear trend,
F(1,35) = 147.37, p < 0.001, η2p = 0.808. Consistent with Won and
Leber (2016), our results show that spatial choices were robustly in-
fluenced by reward feedback, reflecting more optimal choices with
reinforcement learning. Raw data for each phase of all experiments is
included as Supplemental Material (File S1).

2.2.2. Test phase
A robust cuing effect of 18ms was evident in the test phase in RT, t

(35) = 2.61, p=0.013, d=0.44 (Fig. 3). Accuracy was generally high
and did not exhibit a cuing effect (valid= 93.4%, invalid= 92.6%), t
(35) = 1.10, p=0.280, and there was no hint of a speed-accuracy
tradeoff as participants were numerically less accurate on invalid trials.
When a previously experienced scene served as the background for a
visual search task, perception was biased in favor of stimuli appearing
within the region of that particular scene that the participant had been
more highly rewarded for selecting in the past.

Unlike Jiang et al. (2015) and Won and Leber (2016), robust spatial
biases were evident following reward learning when reward was an-
chored to locations within a scene rather than a location on a blank
computer screen. Furthermore, the observed spatial bias was bound
specifically to the scene context, as no one viewer-centric location (e.g.,
upper right) was generally more likely to be rewarded than any other,
attesting to the ecological validity of the bias (see Won & Leber, 2016).
This contextual specificity may help to explain why a significant spatial
bias was observed in Chelazzi et al. (2014) on two-target trials but not
single target trials, whereas Jiang et al. (2015) and Won and Leber
(2016) failed to find evidence for an influence of reward learning on
spatial attention (see 7. General Discussion for further discussion on this
issue). The results provide clear evidence for a role for reward learning
in the shaping of spatial attention.

3. Experiment 2

The results of Experiment 1 provide straightforward evidence that
selection history can robustly bias spatial attention in a context-specific
manner. However, it is unclear to what degree this observed bias is the
product of a reward-mediated process specifically. This is because the
amount of reward participants earn on each trial is entirely contingent
on their orienting behavior. Not only do participants experience greater
rewards when selecting the high-value quadrant, they simply select it
more often. This repeated selection, motivated by reinforcement
learning, could be more directly related to the observed spatial bias
than the rewards that motivate such selection per se.

To the degree that the bias observed in Experiment 1 is the result of
selection history rather than reward history per se, it should also be
evident following non-reward corrective feedback that similarly moti-
vates participants to repeatedly select a particular quadrant within a
scene. To determine whether this is the case, we conducted a second
experiment in which, rather than receive different amounts of reward,
participants received varying non-reward performance feedback. If
participants selected what was a low-value location in the prior ex-
periment, 'Not good' was presented on the computer screen in place of
the monetary feedback. If they selected the high-value quadrant off-
center, 'Good!' feedback was provided, and if in the center of the high-
value quadrant, the word 'Excellent!!' appeared. To the degree that such
non-reward feedback is effective in curbing spatial choice behavior,
resulting in a robust learning curve as in Experiment 1, a fair test of the
necessity of reward in producing an enduring spatial attention bias can
be provided.

3.1. Methods

3.1.1. Participants
Thirty-six new participants were recruited from the Texas A&M

University community. Participants were compensated with course
credit. All reported normal or corrected-to-normal visual acuity and
normal color vision. Data from one participant was replaced due to
chance-level performance in the test phase (accuracy= 49%).

3.1.2. Experimental task
The experimental task was identical to that used in Experiment 1,

with the exception that the feedback consisted of 'Not good', 'Good!',
and 'Excellent!!' in place of 1, 4 and 7 cents along with cumulative
earnings, respectively. The instructions emphasized using feedback to
click on the “best” locations. Instructions for the test phase again em-
phasized that participants should aim to respond both quickly and ac-
curately, but did not make reference to the absence of monetary re-
wards as such rewards were not present during training.
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Fig. 2. Reward earned across different presentations of each scene during the training phase of Experiment 1.
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3.1.3. Data analysis
To facilitate statistical analysis and interpretation of the data across

experiments, performance feedback received during the training phase
was quantified using the corresponding numerical values from
Experiment 1 (i.e., 1, 4, and 7 for 'Not good', 'Good!', and 'Excellent!!',
respectively).

3.2. Results and discussion

3.2.1. Training phase
As in Experiment 1, performance differed across scene presentation,

F(39,1365) = 24.06, p < 0.001, η2p = 0.407 (Fig. 4), exhibiting a
learning curve that was well accounted for by a linear trend, F(1,35) =
44.34, p < 0.001, η2p = 0.559. Once again, performance began at
chance level, plateauing around the 35th time each scene was pre-
sented. Clearly, the feedback manipulation was effective in modulating
the selection behavior of participants.

3.2.2. Test phase
A robust cuing effect of 18ms, the same magnitude as in Experiment

1, was evident in the test phase in RT, t(35) = 3.14, p=0.002,
d=0.55 (Fig. 3). Accuracy was once again generally high and did not
exhibit a cuing effect (valid= 93.9%, invalid= 93.3%), t(35) = 1.12,
p=0.271, and there was no hint of a speed-accuracy tradeoff as par-
ticipants were numerically less accurate on invalid trials.

The results of Experiment 2 are clear: monetary reward is not ne-
cessary to observe the learning and expression of habitual spatial at-
tention biases. Rather, both the learning and persistent expression of
attentional bias observed in Experiment 1 appear to be driven by re-
inforcement-guided selection history. Through feedback, participants
are encouraged to repeatedly select a particular region of a scene. This
repeated selection, which may or may not be driven by internal reward
signals (see 7. General Discussion), becomes automatic such that the
mere presence of the scene comes to trigger a spatial attention shift.

This contrasts with attentional biases towards prior target features,
which are not typically evident following brief unrewarded training
(see, e.g., Anderson, 2016c; Anderson & Halpern, 2017; Anderson,
Laurent, & Yantis, 2014; Anderson et al., 2011, 2012; Qi, Zeng, Ding, &
Li, 2013; Roper & Vecera, 2016; see also Sali, Anderson, & Yantis,
2014). Biases for stimulus features arising from reward-independent
selection history typically require extensive training to develop (e.g.,
Anderson, Chiu, DiBartolo, & Leal, 2017; Kyllingsbaek, Schneider, &
Bundesen, 2001; Kyllingsbaek, Van Lommel, Sorensen, & Bundesen,
2014; Qu, Hillyard, & Ding, 2017; Shiffrin & Schneider, 1977), whereas
in the present study each scene was only presented forty times during
training. One salient difference in the training protocols used across
studies is that for studies examining value-driven attention to stimulus
features, the reward learning is only loosely contingent upon perfor-
mance (must correctly report the target in an easy color-search task in
which accuracy is generally high), and is thought to rely predominantly
on Pavlovian mechanisms (see esp., Le Pelley et al., 2015; Sali et al.,
2014). On the other hand, the training phase of the present study
clearly emphasizes reinforcement learning, as reward is entirely con-
tingent on the spatial choices of participants. To the degree that

learning in the feature and spatial domain predominantly rely upon
different underlying learning mechanisms, their specificity with regards
to the nature of performance feedback may be different (see Section 7
for further discussion on this issue).

4. Experiment 3

The findings of Experiment 2, in which non-reward feedback both
curbed spatial choice behavior and biased spatial attention in a sub-
sequent task, raises an important question concerning the reason why
significant biases were observed in the present study but not in Jiang
et al. (2015) and Won and Leber (2016). As previously suggested, one
possibility is that the scene context allows participants to anchor spatial
representations to the configuration of objects within a scene (e.g., to
the left of object A and above object B) or to its unique spatial layout
(e.g., bottom-left of room A). Such configural spatial information pro-
cessing could help explain why Chelazzi et al. (2014) reported a sig-
nificant spatial attention bias on two-target but not single-target trials.
Another possibility is that different learning mechanisms, one Pavlo-
vian and the other reinforcement-based, is alone responsible for the
different pattern of results. In this case, any repeated shift of spatial
attention can be trained to become automatic within a particular con-
text with sufficient repetition. Note that in Jiang et al. (2015) and Won
and Leber (2016), the target appeared equally-often in each quadrant
when the effects of reward were examined, such that no one quadrant
was associated with a greater frequency of selections. In this sense, the
reward coincided with where the target happened to be on a given trial
in those studies, and was delivered probabilistically based on this
contingency. In the present study, the selection behavior of participants
directly determined the amount of reward received.

To test between these two competing accounts, we conducted a
third experiment in which scene textures, rather than scenes containing
a unique arrangement of meaningful objects and a distinct spatial
layout, were used. Such scene textures are more analogous to the uni-
form background on which letter-like characters appear in studies
failing to show spatial attention biases following reward training (Jiang
et al., 2015; Won & Leber, 2016). To maximize scene-specific learning,
we only trained four rather than eight scenes, reducing the overall
memory burden for rewarded locations. The texture scenes contained
no objects and were roughly uniform throughout, but were very easily
distinguishable from each other, allowing for context-specific learning.
The same feedback manipulation was used as in Experiment 1. Of in-
terest was, in the event of robust learning and thus repeated selection of
particular regions of different scenes during training, can a subsequent
attentional bias still be observed. If the spatial representations that bias
attention are anchored to the configuration of objects within a scene or
its unique spatial layout, no bias should be evident, but if reinforcing a
particular spatial shift of attention in a particular context is alone suf-
ficient to produce a spatial attention bias, the results of Experiment 3
should mirror those of the prior two experiments.

4.1. Methods

4.1.1. Participants
Thirty-six new participants were recruited from the Texas A&M

University community. Participants were compensated with money
earned in the experimental task. All reported normal or corrected-to-
normal visual acuity and normal color vision. Data from one participant
was replaced due to chance-level performance in the test phase (accu-
racy= 46%).

4.1.2. Experimental task
The experimental task was identical to that used in Experiment 1,

with the following exceptions. Four texture images were used for
scenes. The textures were of sand, water, rock, and an aerial view of a
dense forest, and were taken from images freely available on the
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Fig. 4. The quality of feedback received, expressed in numerical terms corre-
sponding to the reward structure used in Experiment 1, across different pre-
sentations of each scene during the training phase of Experiment 2.
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internet. During training, each scene was presented on 40 trials, redu-
cing the duration of training to 160 total trials. Each of the four
quadrants was the high-value quadrant for one of the scene textures,
with each quadrant serving as the high-value quadrant equally-often for
each scene texture across participants. Rewards were increased to 2, 8,
and 15 cents to provide participants with an appropriate level of overall
compensation.

4.2. Results and discussion

4.2.1. Training phase
As in the prior two experiments, performance differed across scene

presentation, F(39,1365) = 44.62, p < 0.001, η2p = 0.560 (Fig. 5),
exhibiting a learning curve that was well accounted for by a linear
trend, F(1,35) = 114.99, p < 0.001, η2p = 0.767. Even without the
presence of objects with which to anchor representations of space,
participants had no difficulty learning to repeatedly select higher-value
regions of a scene texture.

4.2.2. Test phase
Unlike in the prior two experiments, no cuing effect was evident in

either RT, t(35) = 0.16, p=0.874 (Fig. 3), or accuracy (valid= 95.6%,
invalid= 95.3%), t(35) = 0.79, p=0.437. Importantly, the magnitude
of the cuing effect was significantly larger in Experiment 1, t(70) =
2.25, p=0.027, d=0.53, and Experiment 2, t(70) = 2.69, p=0.009,
d=0.63, when comparing to the non-significant cuing effect observed
here. Even though participants repeatedly selected a particular region
of space in each scene texture during training, which was evident in a
robust learning curve, this repeated behavior was not effective in
creating an enduring attentional bias.

Performance was generally faster in Experiment 3 (mean
RT=761ms) compared to the other two experiments (mean
RT=816ms for Experiment 1 and 837 for Experiment 2), ts > 2.06,
ps < 0.043, likely owing to the reduced difficulty of searching against
a more uniform background in the case of scene textures. One possi-
bility is that this did not allow sufficient time for the scene to be pro-
cessed such that a spatial attention bias could exert itself, whereas this
was not the case in Experiments 1 and 2. Two sources of evidence argue
against this possible explanation for the different pattern of results.
First, in Experiment 3, mean RT was a poor predictor of the cuing effect,
r=0.042, p=0.811. Second, when comparing participants in
Experiment 3 to the fastest half of participants in each of Experiments 1
and 2, a significant difference in the cuing effect still emerged, t(70) =
2.41, p=0.019, d=0.57, even though mean RT was now numerically
slower for Experiment 3 (761 vs 738ms).

It is worth noting that the training phase of Experiment 3 was half
the duration of Experiments 1 and 2, which was done to match the

number of exposures to each individual scene. It is unclear whether this
difference had any effect on overall learning. Although learning was
generally robust, with a pronounced learning curve evident in perfor-
mance, participants also had less time to consolidate learning for each
scene prior to the test phase (less time, on average, between two pre-
sentations of the same scene), and such consolidation may be important
for the transfer of learning to the test phase. At the same time, there
were fewer scenes to keep track of during learning, which could en-
hance the quality or fidelity of learning for each scene.

Taken together, the results of Experiment 3 demonstrate that re-
peatedly selecting a particular region of space, even when participants
are provided monetary rewards for doing so, is not itself sufficient to
give rise to an enduring spatial attention bias. In this way, our results
are very much in accord with those of Jiang et al. (2015) and Won and
Leber (2016). Our findings suggest that the ability to anchor spatial
representations to the configuration of objects within a naturalistic
scene and its distinct spatial layout is an important component of se-
lection history as it pertains to the biasing of spatial attention.

5. Experiment 4

Another source of ambiguity, both in the spatial attention bias ob-
served in Experiments 1 and 2 and also in prior demonstrations of
spatial attention biases driven by selection history (Chelazzi et al.,
2014), is the degree to which these biases reflect an automatic stimulus-
evoked shift of attention on the one hand versus a bias to execute a
particular search pattern or strategy on the other hand. This is because,
in the test phase, participants are tasked with searching the display for a
target, and attention was probed after only a brief presentation of the
search context. Under these conditions, if participants choose to begin
search in the previously high-value region or if the presentation of the
search context triggers a transient shift of attention, a spatial attention
bias is predicted in each case. However, if the stimuli that would trigger
the shift of attention remain on screen for a sufficient period of time,
participants will reorient their attention and perhaps exhibit inhibition
of return (IOR; Klein, 2000; Posner, Rafal, Choate, & Vaughan, 1985).
This is not the case for the execution of a search pattern or strategy,
which would be engaged whenever the search array is onset. Experi-
ment 4 tested between these two accounts by increasing the stimulus-
onset-asynchrony (SOA) between the presentation of the scene context
and the presentation of the search array (letters) during the test phase.

5.1. Methods

5.1.1. Participants
Thirty-six new participants were recruited from the Texas A&M

University community. Participants were compensated with course
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Fig. 5. Reward earned across different presentations of each scene during the training phase of Experiment 3.
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credit. All reported normal or corrected-to-normal visual acuity and
normal color vision. Data from one participant was replaced due to
chance-level performance in the test phase (accuracy= 47%).

5.1.2. Experimental task
The experimental task was identical to that used in Experiment 2,

with the following exceptions. Only four of the eight scenes were used,
each being presented on 40 trials during training for a total of 160
training trials. Each of the four quadrants was the quadrant that yielded
positive feedback for one of the scenes, with each quadrant serving as
the reinforced quadrant equally-often for each scene across partici-
pants. During the test phase, the period of time over which the scene
was presented prior to the onset of the search array was increased to
2500ms.

5.1.3. Data analysis
The data were analyzed in the same manner as Experiment 2, sub-

stituting feedback with numerical values for the sake of facilitating
statistical analysis.

5.2. Results and discussion

5.2.1. Training phase
As in Experiment 2, performance differed across scene presentation,

F(39,1365) = 22.19, p < 0.001, η2p = 0.388, exhibiting a learning
curve that was well accounted for by a linear trend, F(1,35) = 74.32,
p < 0.001, η2p = 0.680.

5.2.2. Test phase
Unlike Experiment 2, no cuing effect was evident in either RT, t(35)

= 0.29, p=0.775 (Fig. 3), or accuracy (valid= 95.4%, in-
valid= 94.9%), t(35) = 1.32, p=0.197. The difference in the cuing
effect between this experiment and Experiment 1, t(70) = 1.00,
p=0.321, and well as Experiment 2, t(70) = 1.04, p=0.303, did not
reach the threshold for statistical significance. However, across parti-
cipants, the variability of the cuing effect was substantially greater in
this experiment compared to both Experiment 1, F(35,35) = 3.35,
p < 0.001, and Experiment 2, F(35,35) = 5.49, p < 0.001. The Bayes
factor for the cuing effect in Experiment 4 was also 5.30 in favor of the
null hypothesis, which is considered strong evidence commensurate
with traditional thresholds for rejecting the null using conventional
hypothesis testing methods (Rouder, Speckman, Sun, Morey, & Iverson,
2009). The number of participants exhibiting a large negative cuing
effect (<−50ms) indicative of IOR was substantially greater in Ex-
periment 4 than in the prior three experiments combined (9 vs 0), χ2 =
28.80, p < 0.001, φ = 0.447.

Lengthening the scene-to-search array SOA resulted in the absence
of a reliable cuing effect across participants, in contrast to the results of
Experiment 2. Interestingly, there appeared to be substantial individual
differences in the magnitude of the cuing effect in the present experi-
ment, with some participants exhibiting a large negative cuing effect
indicative of IOR (unlike in any of the prior experiments) and others
exhibiting a large positive cuing effect indicative of attentional or-
ienting. Perhaps the time course of the processing of the scene se-
mantics necessary to guide spatial attention is variable across in-
dividuals, such that only some participants had sufficient time to
disengage attention prior to the onset of the search array. Taken to-
gether, the results of Experiment 4 are clearly inconsistent with a bias
to execute a particular search strategy, which participants must wait to
execute until the search array is presented, and are more consistent
with a transient, scene-evoked orienting response.

6. Experiment 5

Experiment 5 sought to provide an even stronger test of whether
reinforcement learning biases scene-evoked shifts of spatial attention

rather than the execution of a specific search strategy. To this end, we
had participants complete a free-viewing task during the test phase, and
measured eye position as they viewed the familiar scenes. If re-
inforcement learning results in an enduring bias to direct attention to a
particular region of a scene, participants should preferentially direct
their gaze towards the previously high-value quadrant, even though
they have no specific motivation for doing so. Such a bias, if evident,
would be quite powerful, as it would need to be sufficient to overcome
any novelty-seeking bias (e.g., Johnston, Hawley, Plewe, Elliott, &
DeWitt, 1990; Johnston & Schwarting, 1997) by which participants
prefer to explore less familiar aspects of the scene. We looked for both
an immediate bias in initial saccades, as well as a sustained bias in
overall frequency of saccades and total time spent fixating the high-
value quadrant. Although an initial selection bias may be evident,
consistent with the results of Experiment 4, unlike Experiment 4 there is
no explicit task and thus no explicit goal-directed process to compete
with a bias resulting from selection history. As such, Experiment 5
provides a direct test of spatial attention biases that are independent of
search strategy.

6.1. Methods

6.1.1. Participants
Thirty-six new participants were recruited from the Texas A&M

University community. Participants were compensated with course
credit. All reported normal or corrected-to-normal visual acuity and
normal color vision.

6.1.2. Experimental task
The training phase was exactly identical to that of Experiment 2. In

the test phase, participants completed a free-viewing task. Eye position
was monitored throughout the test phase using an EyeLink 1000 Plus
eye tracker running at 1000 Hz. The test phase consisted of two blocks
of 48 trials, during which each scene was presented six times for
3000ms each in a random order. Scenes were presented successively
without enforced central fixation between scenes. Nine-point calibra-
tion was used at the beginning of each block. For a dataset to be con-
sidered usable, all points needed to be validated within 1.5°.
Participants were informed that there was no specific task to perform,
and that they were free to look around the images however they
wished.

6.1.3. Data analysis
The training phase data were analyzed in the same manner as

Experiment 2, substituting feedback with numerical values for the sake
of facilitating statistical analysis. For the test phase, we compared two
indices of attentional bias between the previously high-value quadrant
and the average of the three previously low-value quadrants. The first
was total fixation time, summed over all fixations within each quadrant,
and the second was saccade shifts to each quadrant. In defining saccade
shifts and fixation time, four areas of interest (AOIs) were drawn, each
encompassing an entire quadrant of the screen. A saccade shift was
defined as when a saccade crossed one of the AOI boundaries, landing
in a different quadrant than where it originated. In a follow-up analysis
examining the first saccade shift, only trials on which eye position did
not begin in the high-value quadrant were analyzed, and the percentage
of saccade shifts to the high-value quadrant was measured for each
participant.

6.2. Results and discussion

6.2.1. Training phase
As in Experiment 2, performance differed across scene presentation,

F(39,1365) = 59.23, p < 0.001, η2p = 0.629, exhibiting a learning
curve that was well accounted for by a linear trend, F(1,35) = 116.54,
p < 0.001, η2p = 0.769.
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6.2.2. Test phase
Eye movements were robustly biased towards the previously high-

value quadrant. Participants spent a longer amount of time fixating the
previously high-value quadrant compared to the other three quadrants,
t(35) = 8.47, p < 0.001, d=1.41. Participants also shifted gaze more
frequently to the previously high-value quadrant compared to the other
three quadrants, t(35) = 9.90, p < 0.001, d=1.65 (see Fig. 6). When
eye position began in a low-value quadrant, 64.2% of first saccade shifts
were made to the high-value quadrant, which was significantly more
than would be expected from unbiased selection (33.3%), t(35) =
10.22, p < 0.001, d=1.70. Even though there was no specific task or
motivation to look towards any one quadrant more than another, par-
ticipants preferentially looked at the quadrant that they had more fre-
quently selected during the training phase, providing compelling evi-
dence that reinforcement learning is capable of generating an intrinsic
attentional bias towards a particular region within a scene.

7. General discussion

Although the ability of reward learning to modulate feature-based
attention is well established (see Anderson, 2016b), whether reward
learning can influence spatial attention has been much more con-
troversial (Chelazzi et al., 2014; Jiang et al., 2015; Won & Leber, 2016).
In the present study, we sought to characterize whether and how se-
lection history influences spatial attention orienting. Our findings offer
new insights into the mechanisms and principles governing the inter-
play between these two systems, providing an integrative account that
bridges previously conflicting findings in the literature.

7.1. Representational basis

When scenes contained an array of objects with a meaningful spatial
organization, reinforcing selection of a particular region within a given
scene resulted in an enduring spatial attention bias towards that region.
This provides strong evidence that learning from feedback can robustly
shape the spatial attention system, consistent with an earlier report
(Chelazzi et al., 2014). A spatial bias was not evident, however, when
scenes provided an easily identifiable spatial context, but were largely
uniform in their spatial content (scene textures), without any objects or
boundaries by which to anchor position information (e.g., to the left of
the window and above the bed). The absence of a learned spatial bias
under these conditions echoes more recent reports demonstrating
negligible influences of reward feedback on spatial attention (Jiang
et al., 2015; Won & Leber, 2016).

Our findings suggest that relational information within a scene is an
important component of the underlying representation that is modified

by selection history to guide spatial attention. One possibility is that
observers anchored their representation of space to the configuration of
meaningful objects within the scenes. In naturalistic environments,
landmarks often serve as the basis for spatial orienting. Humans rely
strongly on landmarks when navigating (e.g., Montello, 2005; Newman
et al., 2006). The fewer the landmarks that are available to assist with
navigation, and the more individuals have to rely on body-centered
representations involved in dead reckoning, the poorer navigation
performance becomes (Cornell & Heth, 2000). A second possibility is
that the spatial layout provided by the scenes, which depict clear
boundaries not found in the scene textures, served as the anchor point
for spatial attention (e.g., lower-left side of the room). In the absence of
landmarks and layout information, a condition represented by scene
textures in the present study, spatial attention does not seem to be
sensitive to influences of selection history. In this sense, the spatial
attention biases observed in the present study map well onto the spatial
information that humans use to orient and navigate in naturalistic en-
vironments, supporting the ecological validity of this automatic or-
ienting mechanism.

In this way, the findings lend important insights into the dis-
crepancy between the positive findings of Chelazzi et al. (2014) on the
one hand and the negative findings of Jiang et al. (2015) and Won and
Leber (2016) on the other hand. The displays used by Jiang et al. (2015)
and Won and Leber (2016) are clearly more similar to the scene tex-
tures used in the present study, where there is no clear anchor point for
the spatial representations upon which reward is contingent. Let us
assume that the representation of space utilized by the participants in
these studies covers the extent of the computer screen (rather than the
entire room in which the experiment is conducted). Rewards are greater
for targets appearing in a particular quadrant of this space (e.g., upper
right). There is nothing intrinsic about the space that would suggest to
participants that it should be partitioned in this way. It is possible that
participants would divide the extent of the spatial layout in two in each
direction, thereby determining the mid-point, and then use the mid-
point to partition the space. An infinite number of other arbitrary
partitions of the space are also possible, or no partition at all (i.e., re-
present the space as a whole). The main alternative would be to use a
purely body-centered representation to define the space, which does
not seem to be the case in either these prior studies or in the present
study. Again, this fits with how observers tend to use spatial informa-
tion to orient and navigate (e.g., Cornell & Heth, 2000; Montello, 2005;
Newman et al., 2006).

Interestingly, Chelazzi et al. (2014) only found evidence for a
learned spatial attention bias when two targets were presented si-
multaneously in a data-limited (i.e., briefly presented) search array, but
not when a single target was presented. These authors interpreted this
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difference in terms of the increased difficulty of two-target trials pro-
viding greater sensitivity to learning effects, although performance was
well below ceiling on single-target trials. Another possibility, not mu-
tually exclusive with the interpretation forwarded by the authors, is
that on two-target trials, participants represented the configuration of
the two high-value targets, or the position of one relative to the other.
To the degree that participants represented the displays in this sort of
way, and it is this representation in particular that is shaped by selec-
tion history, the proposed mechanism can explain the apparent dis-
crepancy between Chelazzi et al. (2014) and Jiang et al. (2015) and
Won and Leber (2016), in addition to the specific pattern of results
observed by Chelazzi et al. (2014).

The spatial representations that have been argued to be sensitive to
learned biases arising from selection history are not “purely spatial”
insofar as they rely in part on object processing mechanisms. This is in
contrast to the representations of space probed by the scene textures
and in prior studies employing a uniform search context (Jiang et al.,
2015; Won & Leber, 2016). It is important to note that such “impure”
representations of space are of the sort that are typically investigated in
the field of “spatial” cognition and thought to play a central role human
navigation ability (e.g., Montello, 2005; Newman et al., 2006). It is
difficult to think that humans could develop a robust spatial attention
bias within an environment that they would be largely unable to na-
vigate. It is also debatable whether object-independent representations
of space are any less “pure” in their spatial nature, as they must still be
defined in relation to something—namely body position.

Nevertheless, it could be argued that there is nothing intrinsically
spatial at all about the representations used to guide attention in the
present study. Perhaps participants selectively attend to a particular
object within the high-value quadrant, and the observed cuing effects
merely reflect proximity to this reward-associated object. This is diffi-
cult to rule out in practice, as space and the objects that define it are
intricately intertwined. The scenes used in the present study tended to
include a rich array of multiple objects from the same category, as well
as objects that spanned multiple quadrants. A number of different types
of objects appeared within multiple difference scenes as well (e.g.,
books on a bookshelf, chairs, beds, cabinets, pictures on a wall, chests of
drawers, windows, etc.). It would appear that simple object-based
biases, which tend to show appreciable tolerance within a particular
object category (e.g., Hickey, Keiser, & Peelen, 2015; Hickey & Peelen,
2015), cannot easily account for the findings of the present study.
Furthermore, the ability to represent object identity presumably re-
quires spatial attention directed to the object (e.g., Treisman & Gelade,
1980). Perhaps the most telling evidence that object-based attentional
biases cannot provide a complete account of the present findings can be
found in the fundamental difference in the learning mechanisms that
are involved (see Section 7.3 below).

Also speaking to the ecological validity of the observed spatial at-
tention biases, these biases were by definition contextually specific. It
was not the case that one region of space (e.g., upper right side of the
screen) was any more rewarded than any other region across scenes, or
that any one type of object was itself predictive of reward. Rather, the
observed spatial attention biases were specific to the particular ar-
rangement of a particular set of objects, with multiple such arrange-
ments stored in long-term memory to guide selection. In this way,
spatial attention biases are sensitive to context in a similar manner to
what has been shown to be the case for feature-based attentional biases
(Anderson, 2015b), allowing for automatic attention influences to more
reliably guide selection than would otherwise be the case.

7.2. Mechanisms of attentional selection

The findings of the present study suggest that selection history can
bias stimulus-evoked spatial orienting. The observed attentional bias
was shown to be transient, no longer evident if the scene context was
presented sufficiently in advance of the search array, which is

inconsistent with the bias reflecting the execution of a particular search
strategy (e.g., search and disconfirm the upper right quadrant before
considering other areas). A subset of participants exhibited pronounced
IOR, further consistent with stimulus-evoked orienting. Compellingly,
eye movements were robustly biased towards the previously high-value
quadrant during a free-viewing task.

The observed spatial attention bias also appears to be non-strategic.
There was no benefit to orienting to the previously reinforced region of
a scene during the test phase; indeed, doing so would direct participants
to a non-target location more often than not in Experiment 1–4, and
Experiment 5 had no specific task. Similar logic is used in studies of
contingent attentional capture that employ the spatial cuing paradigm
(e.g., Folk & Remington, 1998; Folk, Remington, & Johnston, 1992).
Taken together, the results of the present study suggest that when ob-
servers are confronted with a familiar scene in which a spatial shift of
attention to a particular region has been reinforced, this spatial shift of
attention comes to be evoked by the scene it is associated with.

7.3. Learning mechanisms

Unlike value-driven attentional capture by previously rewarded
features, which converging evidence suggests is learned via Pavlovian
rather than reinforcement learning mechanisms (e.g., Bucker &
Theeuwes, 2017; Le Pelley et al., 2015; Sali et al., 2014), the influence
of selection history on spatial attention appears to be distinctly re-
inforcement-based. Extrinsic (monetary) reward is clearly not needed to
observe a robust effect of selection history, as non-reward corrective
feedback produced a bias of identical magnitude. This contrasts sharply
with studies examining the effects of unrewarded selection history on
feature-based attention, which frequently produce no evidence of a
persistent attentional bias (e.g., Anderson, 2016c; Anderson & Halpern,
2017; Anderson et al., 2011, 2012; Anderson, Laurent, et al., 2014; Qi
et al., 2013; Roper & Vecera, 2016; see also Sali et al., 2014). This
discrepancy cannot be readily explained by simply appealing to the
strength of the training manipulation, as these feature-based attention
studies included many more trials per trained stimulus than was used in
the present study (i.e., 40). Value-dependent attentional biases have
also been demonstrated for differently rewarded objects, faces, and
scenes matched for selection history (Barbaro, Peelen, & Hickey, 2017;
Della Libera & Chelazzi, 2009; Donohue et al., 2016; Failing &
Theeuwes, 2015; Hickey & Peelen, 2015; Kim, Ghazizadeh, & Hikosaka,
2015; Raymond & O'Brien, 2009; Yamamoto, Kim, & Hikosaka, 2013),
which contrasts with the findings of the present study in which the
magnitude of attentional bias was unaffected by the presence or ab-
sence of associated extrinsic rewards (compare Experiment 1 and 2).

We propose that the effects of selection history on spatial attention
operate over fundamentally different learning mechanisms than those
thought to underlie value-driven attention to high-value features and
objects. Participants execute a spatial shift of attention, very likely both
covert and overt in nature (given the task to move a cursor to the se-
lected location), to a chosen region of space. This spatial shift of at-
tention can be thought of as a reinforceable behavior, just like a motor
response (e.g., pressing a lever). Based on the quality of the resulting
feedback, participants are either inclined to repeat this behavior or
execute a different behavior the next time the scene is encountered. As
a particular shift of attention is repeated in a particular context, it
eventually becomes automatic in that context such that the presenta-
tion of the context itself triggers the associated behavior.

An open question remains the extent to which the reward system
influences the spatial attention system, and whether the reinforcement
learning observed in the present study is directly or indirectly reward-
related. One possibility is that the non-reward corrective feedback used
in Experiments 2 and 5 motivates participants to repeat a particular
behavior, and this repetition of behavior is alone sufficient to produce a
spatial attention bias. Should this be the case, simply instructing par-
ticipants to select a particular region of a scene, rather than having
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them discover the “best” location to select through trial and error,
would be sufficient to produce a robust attentional bias. Another pos-
sibility is that the non-reward feedback, when positive, resulted in in-
ternal reward signals, as has been hypothesized to play a role in per-
ceptual learning (Herzog & Fahle, 1999; Roelfsema & van Ooyen, 2005;
Roelfsema, van Ooyen, & Watanabe, 2010; Sasaki, Nanez, & Watanabe,
2010; Seitz, Lefebvre, Watanabe, & Jolicoeur, 2005; Seitz & Watanabe,
2005). In fact, even the simple act of correctly completing a trial has
been hypothesized to produce an internal reward signal capable of
modulating sensory representations through a learning process (Sasaki
et al., 2010; Seitz & Watanabe, 2005). Teasing these two competing
possibilities apart is difficult, as imposing any task structure that results
in the ability to produce correct vs incorrect behavior would have the
potential to generate associated internal reward signals. One potential
approach would be to examine spatial attentional learning in in-
dividuals who differ in how they process reward information, for ex-
ample individuals who are depressed (see Anderson, Leal, Hall, Yassa, &
Yantis, 2014; Anderson et al., 2017).

A related question concerns the role of awareness in the observed
spatial attention biases. Explicit awareness of the reward contingencies
does not appear to be critical for attentional biases towards previously
reward-associated features (e.g., Anderson, 2015a, 2015b; Anderson,
Faulkner, Rilee, Yantis, & Marvel, 2013; Bourgeois, Neveu, &
Vuilleumier, 2016; Leganes-Fonteneau, Scott, & Duka, 2018; Pearson,
Donkin, Tran, Most, & Le Pelley, 2015), nor is explicit awareness of
repeated stimulus configurations necessary for contextual cuing (Chun
& Jiang, 1998, 2003). As such, implicit learning mechanisms may re-
flect a core component of the influence of selection history on attention,
including spatial attention. At the same time, we argue that the atten-
tional biases observed in the present study are the consequence of re-
inforcement learning, which contrasts with attentional biases towards
previously reward-associated features, which are presumed to operate
via Pavlovian learning mechanisms (e.g., Bucker & Theeuwes, 2017; Le
Pelley et al., 2015; Sali et al., 2014). The overt choice component of the
training phase of the present study encourages active learning through
trial and error, and such active learning may be critical for the atten-
tional biases we observed, which might explain the equally robust bias
with and without explicit (monetary) reward. Consistent with this
distinction, explicit knowledge has been implicated in scene-based
contextual cueing (Brockmole & Henderson, 2006b). Future research
might employ a training procedure in which reward is decoupled from
the decision where to orient/click in order to directly examine the role
of contingency awareness in biasing spatial attention.

7.4. Conclusions

The findings of the present study highlight a powerful role for re-
inforcement learning in the control of spatial attention. This influence
does not depend specifically on reward feedback, but rather reflects a
broader consequence of selection history. When observers repeat a
spatial shift of attention to a particular region of a scene in order to
achieve a desired outcome, the scene will come to automatically trigger
this attention shift. This learned spatial bias is tied to relational in-
formation contained within a particular scene (either the configuration
of objects, the spatial layout, or both), and can be maintained for a
variety of different scenes with context specificity. In this way, re-
warding outcomes can bias attention in at least two fundamentally
different ways, one on the basis of reward-predictive features and one
on the basis of spatially-localized shifts of attention that are reinforced
by the resulting outcome. The influence of reinforcement learning on
spatial attention reflects a new vista in attention research that is likely
to offer important insights into how different aspects of selection his-
tory (Awh et al., 2012) differently influence the control of information
processing.
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