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Cognitive flexibility reflects both a trait that reliably differs between individuals and a
state that can fluctuate moment-to-moment. Whether individuals can undergo persistent
changes in cognitive flexibility as a result of reward learning is less understood. Here, we
investigated whether reinforcing a periodic shift in an object selection strategy can make
an individual more prone to switch strategies in a subsequent unrelated task. Participants
completed two different choice tasks in which they selected one of four objects in an
attempt to obtain a hidden reward on each trial. During a training phase, objects were
defined by color. Participants received either consistent reward contingencies in which
one color was more often rewarded, or contingencies in which the color that was more
often rewarded changed periodically and without warning. Following the training phase,
all participants completed a test phase in which reward contingencies were defined
by spatial location and the location that was more often rewarded remained constant
across the entire task. Those participants who received inconsistent contingencies during
training continued to make more variable selections during the test phase in comparison
to those who received the consistent training. Furthermore, a difference in the likelihood
to switch selections on a trial-by-trial basis emerged between training groups: participants
who received consistent contingencies during training were less likely to switch object
selections following an unrewarded trial and more likely to repeat a selection following
reward. Our findings provide evidence that the extent to which priority shifting is reinforced
modulates the stability of cognitive control settings in a persistent manner, such that
individuals become generally more or less prone to shifting priorities in the future.

Keywords: cognitive flexibility, reinforcement learning, attentional selection, decision making, impulsivity

INTRODUCTION
An important component of adaptive behavior is the ability to
flexibly update cognitive operations such as the deployment of
attention or the selection of a behavioral strategy. Attentional
selection is governed by cognitive control settings (e.g., Wolfe
et al., 1989; Folk et al., 1992; Corbetta and Shulman, 2002) and
determines which information from the environment receives
cognitive processing and influences decision making (Yantis and
Johnston, 1990; Desimone and Duncan, 1995; Reynolds et al.,
1999; Yantis and Egeth, 1999). In order to promote survival
and well-being, cognitive control settings must prioritize stim-
uli that will yield rewarding outcomes when selected. As task
demands and reward contingencies change, individuals must be
able to flexibly update these control settings. Converging evi-
dence suggests that previous experiences as well as trait individual
differences contribute to between-subject variance in cognitive
flexibility (Hertwig et al., 2004; Cools, 2008; Hertwig and Ervev,
2009). In particular, search history influences future control set-
tings both within the same task as well as across seemingly diverse
domains of cognition (Hills and Hertwig, 2010; Hills et al., 2010).
However, the degree to which the stability of an environment’s
reward structure may persistently influence future cognitive con-
trol states remains poorly understood. In the current study, we

therefore examined whether the rate at which reward contingen-
cies unpredictably changed in the past influences future selection
behavior, making an individual more or less prone to switch
strategies.

When searching for a hidden reward, individuals may choose
to explore the environment by testing new behavioral selections
or to exploit selections that were rewarded in the past (see Cohen
et al., 2007). With limited time and resources, individuals must
set a criterion for the amount of evidence required to stop select-
ing one option and begin selecting another in order to maximize
reward. Recent evidence suggests that human observers follow
Charnov’s Marginal Value Theorem, a model of animal behavior,
when searching for hidden rewards such that selection switches
occur when the reward yield from the currently exploited selec-
tion falls below the overall average reward yield (Charnov, 1976;
Wolfe, 2013). Individuals therefore tend to switch to an explo-
ration strategy once an exploited selection begins to yield rewards
at a rate that is below the expected value of the other options as a
whole.

An individual’s adoption of either exploration or exploitation
strategies in the past primes future behavior. Hills and Hertwig
(2010) had participants make selections between two alterna-
tives with differing reward distributions. Participants were given
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feedback after each selection to allow for learning, but criti-
cally there were no monetary consequences based on participants’
choices. Participants who frequently switched targets during this
evaluation period tended to base a final consequential selection
on discrete comparisons of individual trials and to underweight
rare events. Conversely, those participants who did not switch
frequently were more likely to choose whichever target had the
overall larger average yield across the entire evaluation phase.
Similarly, in another study, participants who engaged in exploita-
tive search demonstrated more stable behaviors in a later lexical
decision task than those who had previously engaged in explo-
rative search (Hills et al., 2010). Taken together, both studies
provide evidence that individuals’ previous selection strategies
modulate current states of cognitive flexibility.

Existing tasks such as those used by Hills et al. (2010) and
Hills and Hertwig (2010) do not account for situations in which
reward contingencies in the environment change periodically
and without warning. Under such changing conditions, indi-
viduals must decide when to update their predictions regarding
the value of each potential selection. In a dynamic environment,
any non-rewarded selection may be indicative of a decrement
in the true underlying value of the selected object to below
that of alternatives, or could simply result from a probabilis-
tic instance of no reward following optimal selection. A stable
strategy of cognitive control in which a particular object remains
prioritized despite periodically missed rewards may be advanta-
geous when the object-reward contingencies remain reliable and
consistent. At the same time, this stable strategy may be dis-
advantageous under conditions in which such contingencies are
subject to change unpredictably. Consequently, in the current
experiment, we exposed participants to either an initial learning
environment in which reward contingencies were held constant,
or an environment in which contingencies could change without
warning.

Although the influence of previously experienced reward con-
tingency stability on future states of cognitive control remains
unclear, both attentional priority and cognitive control processes
are sensitive to reward learning (e.g., Anderson et al., 2011b).
Reward plays an important role in modulating attentional pro-
cessing (e.g., Della Libera and Chelazzi, 2009; Raymond and
O’Brien, 2009; Hickey et al., 2010a,b) and through associative
learning can create persistent changes in the attentional prior-
ity of stimuli (Anderson et al., 2011a,b, 2012, 2013; Anderson
and Yantis, 2012, 2013; see Anderson, 2013, for a review).
Furthermore, Jimura et al. (2010) found that reward influences
proactive cognitive control: participants made faster judgments in
a working memory task for experimental blocks in which accu-
rate performance was sometimes rewarded than in blocks for
which there was no available reward. This reward-based facilita-
tion in response time as well as a corresponding neural correlate
of sustained proactive control were both positively associated with
individual differences in reward sensitivity. In the current exper-
iment, we extend these previous findings regarding the role of
reward learning on attentional priority and cognitive control to
examine whether persistent changes in the stability of cognitive
control settings can result from learned expectations concerning
the consistency of object-reward contingencies.

Individual differences serve as a second potential source of
variability in cognitive selection strategies. In particular, the
construct of impulsivity has been linked to variation in cogni-
tive flexibility (e.g., Cools, 2008). Between-subject variation in
impulsivity is attributed to concentrations of dopamine within
the prefrontal cortex and striatum, which is governed by poly-
morphisms of the catechol-O-methyltransferase (COMT) and
dopamine transporter (DAT) genes, respectively (Nolan et al.,
2004; Bertolino et al., 2006; Cools, 2008; Bédard et al., 2010;
Heatherton and Wagner, 2011). Although previous research
has associated impulsivity with a range of behavioral deficits
and disorders such as drug abuse (Hester and Garavan, 2004;
Nielsen et al., 2012; Papachristou et al., 2012) and attention
deficit hyperactivity disorder (ADHD; Cools, 2008; Bédard et al.,
2010), healthy adults also demonstrate considerable variability
in trait impulsivity (Patton et al., 1995). Individual differences
in impulsivity are associated with a preference for immedi-
ate reward and may therefore influence individuals’ willingness
to switch behavioral strategies following an unrewarded selec-
tion (Barkley, 1997; Sonuga-Barke, 2003; Tripp and Wickens,
2008).

Given the existing evidence that previous experiences and trait
impulsivity both influence future states of cognitive flexibility,
in the current study, we investigated the unique contribution
of both factors when accounting for behavioral selection strate-
gies. Unlike previous studies of the impact of selection history
on future control settings, we chose to manipulate across sub-
jects the frequency with which participants needed to update
reward predictions in an initial training phase. Specifically, we
manipulated the frequency with which the more-highly rewarded
object switched identity across participants. Participants selected
a square on each trial, after which the location of a hidden
reward was revealed. If they had selected the rewarded square,
they obtained the reward. Half of the participants learned that the
selection of a particularly colored square would lead to a mone-
tary reward for the majority of trials throughout the entirety of
the training phase. For the remainder of the participants, the most
frequently rewarded color switched periodically and without
warning. We refer to these two training conditions as stable and
flexible, respectively. Immediately following the training phase, all
participants completed a novel decision making task (test phase)
in which the more-often rewarded object was defined by its spatial
location. Critically, there was a consistent relationship between
stimulus location and the likelihood of receiving reward for all
participants, thus allowing comparison of choice strategy stability
as a function of training history. First, we hypothesized that more
impulsive individuals would make more variable choices during
the test phase, being more influenced by recently missed rewards,
regardless of training condition. Furthermore, we predicted that
when statistically controlling for any variance in choice behavior
associated with trait impulsivity, test phase selections would vary
as a function of training history. Specifically, we predicted that
participants in the stable training condition would engage in less
variable choice behavior during the test phase and be less likely
to switch object selections on a trial-by-trial basis than those in
the flexible training group, reflecting a persistent shift in cognitive
flexibility.
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MATERIALS AND METHODS
PARTICIPANTS
Sixty-two individuals (41 females) ranging in age from 18 to
33 (M = 21.3, SD = 3.21) completed the study in exchange for
monetary compensation. All participants signed a consent form
that was approved by the Johns Hopkins University Institutional
Review Board. Participants were randomly assigned to the sta-
ble and flexible training groups. Data from one participant was
excluded due to prior participation in a pilot study involving the
same test phase. Data from a second participant was also excluded
from all analyses because they produced no variability in selection
(the same object was selected on every trial) in both the training
and test phases despite being in the flexible training group.

APPARATUS
Participants were seated facing an Asus VE247 LCD monitor that
was connected to a Mac Mini computer. Stimulus presentation
and response collection was controlled by the Psychophysics tool-
box for Matlab (Brainard, 1997). The monitor was positioned
approximately 76 cm from the participant. Participants made all
responses during the training phase using a standard computer
mouse. Responses during the test phase were made using the four
arrow keys of a standard keyboard. Both the keyboard and the
mouse were positioned on a table in front of the participant.

STIMULI
Training phase
On each trial, four colored squares (each 2.03 × 2.03◦ visual angle
with an 2.03◦ gap between stimuli edge-to-edge) appeared along
the horizontal meridian of the computer screen against a black
background. These squares were positioned to the left and right of
a central crosshairs and were rendered in red, green, blue, and yel-
low. A running total of the participant’s earnings in the study was
continuously displayed beneath the crosshairs, centered on the
vertical meridian (see Figure 1A). After the selection of a square,
reward feedback followed that consisted of a dollar sign appearing
in one of the four squares along with either “+8¢” or “+0¢” indi-
cated above the total earnings. The selected square became bold
(line width increased from 1 to 10 pixels) to indicate its selection.

Test phase
The stimuli were identical to those in the training phase with the
exception that all four squares were white and positioned above,
below, to the left, and to the right of the central crosshairs (7.17◦
center-to-center). A running total of the participant’s earnings
was again continuously displayed beneath the crosshairs, and the
same feedback sequence again followed selection of a square (see
Figure 1B).

Barratt impulsivity scale
Participants completed the Barratt Impulsivity Scale (BIS-11;
Patton et al., 1995). All but two participants completed the mea-
sure immediately prior to the training phase of the experimental
task; one completed the BIS-11 5 days prior to participating in
the current experiment and the other completed it 2 days after
participating in the experimental task. The BIS-11 consists of 30
items such as “I say things without thinking,” and “I act on the

FIGURE 1 | Sequence of events for training and test phase trials.

(A) During training, participants selected a colored square to uncover a
hidden reward. Participants accumulated money for each reward-containing
square they selected. (B) During test, participants selected a square based
on location. As in the training phase, they accumulated money for selecting
a square containing a hidden reward.

spur of the moment.” For each item, participants rated the degree
to which they engaged in the described behavior on a four-point
scale ranging from (1) “Rarely/Never” to (4) “Almost Always.”
We computed the total impulsivity score for each participant by
summing the responses to all items. Omitted items on the ques-
tionnaire were assigned that subject’s mean response; items for
which a single participant selected more than one response were
assigned the average of the two items. Scores on the BIS-11 ranged
from 46 to 88 (M = 59.42, SD = 9.02).

PROCEDURE
Training phase
Each of 240 trials began with the presentation of four colored
squares, the arrangement of which was randomly determined.
Participants moved a cursor on the screen using a computer
mouse and selected a single square by clicking the left mouse
button. Clicks outside of a colored square were not counted or
recorded. Following the mouse click, the selected square’s color
outline was bolded for 1.5 s to indicate to the participant that
the selection was registered. Next, a dollar sign appeared inside
one of the four squares and was presented along with the bold
outline of the selected square for an additional 1.5 s. If the par-
ticipant had selected the square that had the dollar sign, 8¢ was
added to their total earnings. Participants viewed reward feed-
back of either “+8¢” or “+0¢” for 1 s following the presentation
of the dollar sign (see Figure 1A). At no point during the task
was fixation enforced. If participants did not make a selection
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within 5 s, all of the squares became bolded for 1.5 s. All other
aspects of the trial were the same as in those in which a response
was made.

We manipulated, between subjects, the likelihood that each
square would receive the hidden reward. For half of the partici-
pants (the stable training group), selection of a single color (coun-
terbalanced across participants) was associated with the receipt
of the reward on 70% of the training phase trials. The remain-
ing three colored squares each contained the hidden reward on
10% of all trials. Participants in this first condition therefore
received consistent contingencies in which one color was always
the most likely to contain the hidden reward. Conversely, the
remainder of participants received a flexible training schedule
in which the color frequently containing the hidden reward was
updated periodically and without notification. For participants
in this condition, each of the four colored squares contained the
hidden reward for 70% of all trials occurring during one of four
60 trial blocks. There was no break between blocks to indicate to
participants when this switch occurred and we counterbalanced
which color was most-often rewarded in the first block. The order
in which the remaining colors were most-often rewarded was con-
sistent across participants such that the order was always red,
yellow, blue, green (red followed green such that one potential
order was blue, green, red, yellow).

Test phase
Immediately following the training phase, all participants com-
pleted a 240 trial test phase in which we examined whether
training history influenced choice behavior. Participants selected
squares based on location using the four arrow keys of a stan-
dard keyboard (e.g., the right arrow key selected the square to
the right of the central crosshairs). As in the training phase, the
outline of the selected square became bold for 1.5 s and then a
dollar sign was presented inside one of the squares for 1.5 s (see
Figure 1B). Reward feedback was presented for 1 s prior to the
onset of the next trial. All of the squares became bolded for 1.5 s
following trials in which participants failed to make a selection
within 5 s. A single square location (counterbalanced across par-
ticipants) contained the hidden reward on 40% of all test phase
trials; the remaining three locations each contained the hidden
reward on 20% of trials. We set the reward contingencies among
the four squares to be more similar in the test phase than in
the training phase to make the optimal strategy less clear for the
participants. Following completion of the test phase, participants
were debriefed.

RESULTS
TRAINING PHASE
We first examined choice behavior in the training phase. For par-
ticipants in the flexible training group, there were three switches
in the underlying reward structure, with each occurring after
60 trials of consistent reward contingencies. For each trial, we
computed the percentage of participants who selected the most
frequently rewarded square (referred to here as the optimal selec-
tion) within each block. The percentage of optimal selections
across individuals on any trial therefore provided an estima-
tion of when participants had converged on the optimal strategy

according to the current contingencies. As illustrated in Figure 2,
participants in both the flexible and stable conditions quickly
learned the selection rule, settling on the optimal square. With
the start of a new block, participants in the flexible training condi-
tion quickly adapted to the new reward contingencies and showed
a strong tendency to select the newly-defined optimal square after
a small number of trials. This rapid adjustment of behavior in
response to a shift in reward contingencies provides evidence that
our manipulation was effective.

TEST PHASE
We next plotted the percentage of participants who selected the
optimal target according to the test phase probabilities for each
trial (see Figure 3). In order for any observed differences in how
frequently participants deviate from the optimal strategy as a
function of training condition to be meaningful, it is important
that both training groups show evidence of rule learning. To
determine the time course of rule learning in the test phase, we
split the data into groups of 60 trials each. Beginning with the first
60 trials, and continuing throughout the entirety of the test phase,
participants in both training groups were substantially more likely

FIGURE 2 | Percentage of participants who selected the optimal square

on each trial of the training phase. Participants who received flexible
training quickly adjusted their behavior to the new reward contingencies
within each block after a switch. Participants who received stable training
maintained a single selection rule throughout the task.

FIGURE 3 | Percentage of participants who selected the optimal square

on each trial of the test phase. Participants selected the optimal target at
a greater rate than would be expected due to random guessing throughout
the test phase following both stable and flexible training.
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to pick the optimal target than would be expected if they had made
all selections randomly (p’s < 0.001), demonstrating learning.

We computed three measures of choice flexibility to determine
whether performance in the test phase varied as a function of
the reward contingencies experienced during the training phase.
First, we computed an index of choice variability for each partic-
ipant, here referred to as the choice stability index. To compute
the choice stability index, we calculated the total number of selec-
tions for each of the location-defined squares across the entire
test phase. We then computed the standard deviation of the four
square-selection sums as a measure of choice variability. A greater
choice stability index means that a participant tended to select
certain squares more frequently than others, while a low choice
stability index reflects a more equal spread of selections across the
four squares.

For the remaining two measures of choice flexibility, we cat-
egorized trials based on whether the participant’s selection on
the previous trial was rewarded. Out of the total number of trials
following an unrewarded selection, we computed the percentage
for which participants selected an object that differed from their
previous selection. Similarly, for trials following a rewarded selec-
tion, we calculated the percentage of trials for which participants
selected the same object as they had on the previous trial.

We first examined whether individual differences in impulsiv-
ity, as assessed with the BIS-11, were associated with variability
in each of the three choice flexibility measures regardless of
training history. As illustrated in Figures 4A,B, high impulsiv-
ity was associated with a greater percentage of selection switches

FIGURE 4 | Individual differences in trait impulsivity and selection

behavior. (A) Relationship between individual differences in trait
impulsivity and the percentage of object selection switches following an
unrewarded selection during test. (B) Relationship between individual
differences in trait impulsivity and the percentage of object selection
repeats following a rewarded selection during test. (C) Relationship
between individual differences in trait impulsivity and choice stability index
during test. Each line denotes the best-fit linear regression equation when
collapsing across training groups.

following unrewarded selections, r(58) = 0.32, p = 0.012, as well
as a smaller percentage of selection repeats following rewarded
selections, r(58) = −0.36, p = 0.005. Furthermore, there was a
trend between trait impulsivity and choice stability index scores,
r(58) = −0.25, p = 0.055, such that participants with greater trait
impulsivity tended to make less stable selections during the test
phase (see Figure 4C). Given the relationship between impulsivity
and choice flexibility regardless of training condition, we report
all group comparisons below with impulsivity score entered as
a covariate to determine whether group differences exist when
statistically controlling for individual differences in impulsivity.

We conducted a 2 × 2 analysis of covariance (ANCOVA) with
factors of training condition (stable vs. flexible) and experimental
half (first vs. second) to determine the impact of reward history
on future selection strategies. As mentioned above, impulsivity
scores were entered into the model as a covariate. As illustrated
in Figure 5A, there was a significant main effect of training con-
dition, F(1, 57) = 5.38, p = 0.024, such that participants made
more variable selections in the test phase following the flexible
training than following stable training. The main effect of experi-
mental half failed to reach significance, F(1, 57) < 0.01, p = 0.957,
as did the interaction of experimental half and training con-
dition, F(1, 57) = 2.21, p = 0.142. As hypothesized, individuals
who received unpredictably changing reward contingencies in the
past made more variable selections during the test phase object
selection task.

We next examined whether training history influenced the
likelihood that individuals selected a different square than they
had on the previous trial. First we investigated whether the per-
centage of selection switches made following an unrewarded

FIGURE 5 | Behavioral results from the test phase. (A) Choice stability
index as a function of training group. Participants continued to make less
variable responses following the stable training than following the flexible
training. (B) Percentage of trials following an unrewarded selection in which
participants selected a different object than their previous selection, as a
function of training group. (C) Percentage of trials following a rewarded
selection in which participants made the same selection as they had on the
previous trial, as a function of training group. Error bars denote 1 SE above
and below the mean.
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selection varied as a function of training history or experimental
half with a 2 × 2 ANCOVA with impulsivity added as a covari-
ate. There were no significant main effects of training condition,
F(1, 57) = 1.69, p = 0.199, or experimental half, F(1, 57) = 0.70,
p = 0.408. As illustrated in Figure 5B, there was a significant
interaction between experimental half and training condition,
F(1, 57) = 5.53, p = 0.022, such that although there was little dif-
ference between groups in the likelihood to switch following
an unrewarded selection in the first half, a difference emerged
in the second half. Participants who received stable training
were less likely to switch following an unrewarded selection in
the second half than participants who received flexible train-
ing. Next, we tested whether the percentage of selection repeats
following a rewarded selection varied as a function of training
history or experimental half with another 2 × 2 repeated mea-
sures ANCOVA. As above, impulsivity scores were again entered
into the model as a covariate. The main effect of training con-
dition, F(1, 57) = 3.12, p = 0.083, as well as the main effect of
experimental half, F(1, 57) = 0.27, p = 0.605, again failed to reach
statistical significance. However, there was a significant interac-
tion between training condition and experimental half, F(1, 57) =
4.55, p = 0.037, such that a group difference again emerged in
the second half of the test phase (see Figure 5C). Participants
who received stable training were more likely to repeat a selec-
tion following a rewarded trial than those who received flexible
training.

Lastly, we examined the relationship between switching behav-
ior in the training phase and choice variability in the test phase
collapsed across both halves. There was a negative correlation
between the percentage of switches made following unrewarded
selections during training and the choice stability index during
test, r(58) = −0.48, p < 0.001, and a positive correlation between
the percentage of selection repeats following rewarded selec-
tions during training and the choice stability index during test,
r(58) = 0.38, p = 0.003 (see Figures 6A,B). These relationships
were not specific to either the flexible or stable training condition,
as indicated by direct comparison (p’s > 0.780). These correla-
tions indicate that on an individual level, shifting strategy more
often during training was associated with more variable selections
during test.

DISCUSSION
In the current study, we examined whether the consistency
of previous reward contingencies in a choice task influenced
later selection strategies independent of individual differences in
impulsivity. Across two phases of the experiment, participants
selected stimuli in an attempt to acquire a hidden reward. We
found that individual differences in trait impulsivity accounted
for variability in selection behavior, such that participants with
high trait impulsivity were more likely to switch selections fol-
lowing a trial in which they did not receive a reward and less
likely to select the same object again after receiving reward than
participants with low impulsivity. Furthermore, although the
reward contingencies were identical for all participants in the test
phase of the experiment, selection patterns differed as a function
of reward history. When statistically controlling for impulsiv-
ity, we found that participants who learned that the reward

FIGURE 6 | Comparison of individuals’ performance during training

and test. (A) Relationship between the percentage of object selection
switches following an unrewarded selection during training and choice
stability index at test. (B) Relationship between the percentage of object
selection repeats following a rewarded selection during training and choice
stability index at test. Each line denotes the best-fit linear regression
equation when collapsing across training groups.

contingencies changed periodically and without warning in the
training phase (flexible training group) made more variable selec-
tions in the test phase than those who experienced consistent
training contingencies (stable training group). Furthermore, we
found evidence in the second half of the test phase that flexible
training participants were more likely to switch object selections
on a trial-by-trial basis regardless of whether their selection was
rewarded on the previous trial.

Our results suggest that the consistency of reward contingen-
cies in the past influenced the weighting of reward outcomes for
guiding behavior in the test phase. Participants did not vary in
the likelihood that they switched object selections on a trial-by-
trial basis when collapsing across the entire test phase. However,
we found an interaction with experimental half for both mea-
sures such that participants who received the consistent reward
contingency training demonstrated a greater shift toward sta-
ble behavior as the experiment progressed than participants who
received the changing reward consistency training. Performance
was similar early in the test phase, as participants gained experi-
ence with the current location-based reward contingencies. As the
test phase progressed and learning continued, participants could
develop expectations concerning the underlying reward structure
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to guide behavior. Our results suggest that the gradual accumula-
tion of evidence that a consistent object was more-often rewarded
in the test phase was weighted differently in the determination of
strategy selection depending on training history. Participants who
received stable training were more likely to adopt and maintain a
stable test phase selection strategy in response to the consistent
contingencies despite periodically missed rewards.

Our findings are consistent with recent research on search and
decision making in humans (Hertwig et al., 2004; Hertwig and
Ervev, 2009; Hertwig and Pleskac, 2010; Hills and Hertwig, 2010;
Hills et al., 2010). Consistent with Hills and Hertwig (2010), we
found that the experience of switching during an initial learn-
ing phase influenced later decisions. A difference between our
paradigm and the search task used by Hills et al. (2010) was the
content of the reward learning. Although participants learned
to either exploit a single area or explore a wider range of areas
in Hills and colleagues’ previous search task, participants in
the current study learned the likelihood that they would need
to update a behavioral selection strategy. Monetary reinforce-
ment therefore facilitated learning regarding the stability of the
environment. Collectively, these findings provide converging evi-
dence in favor of domain general reward-based modulations of
cognitive control.

Our findings also build on recent research tying reward learn-
ing to the control of attention (e.g., Anderson et al., 2011b). The
voluntary and involuntary selection of objects based on reward
history has been a topic of considerable interest in investiga-
tions of both animal and human cognition (Glimcher, 2003;
Della Libera and Chelazzi, 2009; Peck et al., 2009; Raymond and
O’Brien, 2009; Gottlieb and Balan, 2010; Hickey et al., 2010a,b;
Anderson et al., 2011a,b, 2012, 2013; Louie et al., 2011; Anderson
and Yantis, 2012, 2013). The results of the current study pro-
vide evidence that reward history not only serves a modulatory
role for computations of attentional priority, but also modulates
the flexibility of cognitive control. Importantly, in the current
study, participants did not learn to associate value with any
particular stimulus feature. Rather, participants across the two
training groups learned the consistency of reward contingencies.
This learned knowledge from the training phase influenced object
selection in a novel test phase. Our findings therefore suggest that
monetary reinforcement may modulate attentional selection and
decision making even when reward learning is not directly tied to
a stimulus feature.

Reward-based modulations of cognitive flexibility have impor-
tant implications for the study of top-down attentional con-
trol. Sustained and transient components of cognitive control
are sensitive to task demands as well as reward-induced moti-
vation (Botvinick et al., 2001; Braver et al., 2003; Brown and
Braver, 2005; Jimura et al., 2010). Furthermore, control pro-
cesses are known to fluctuate such that individuals are at times
in a greater state of preparation to perform a cognitive opera-
tion such as a task switch or shift of spatial attention (Leber et al.,
2008; Leber, 2010). The results of our study suggest that reward
history also influences preparatory cognitive control. Thus,
reward learning may serve as one additional mechanism through
which individuals update preparatory control based on previous
experiences.

The results of the current study also have important impli-
cations for understanding deficits of attentional control, such
as ADHD and drug abuse, in which individuals demonstrate a
sensitivity to immediate rather than delayed reward (Barkley,
1997; Cools, 2008). Given our findings that reward history influ-
ences the flexibility of goal-directed selection, such sensitivity to
reward may contribute to large modulations of cognitive control
based on previous experiences. Furthermore, we found evidence
that trait impulsivity scores predicted participants’ tendency to
switch selections, and deficits in impulsiveness have been linked
to both ADHD (e.g., Barkley, 1997; Mostofsky and Simmonds,
2008) and drug addiction (e.g., Hester and Garavan, 2004; Nielsen
et al., 2012; Papachristou et al., 2012). Future research is needed
to explore how dopaminergic dysfunctions in disorders such as
ADHD (e.g., Bédard et al., 2010; Heatherton and Wagner, 2011),
drug abuse (e.g., Volkow et al., 2009), and obesity (e.g., Volkow
et al., 2011) are related to individual differences in impulsivity in
healthy individuals and whether the neural mechanisms impli-
cated in these disorders are influenced by rewards linked with
states of cognitive control.
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